例1(2008兰州)一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.
(1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式;
(2)求支柱的长度;
(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.(共10分)
解:(1)根据题目条件,的坐标分别是.······························ 1分
设抛物线的解析式为y=ax2+bx+c,············································································· 2分
将的坐标代入y=ax2+bx+c,得 100a-10b+c=0
100a+10b+c=0
c=6··············· 3分
解得a=-,b=0,c=6.··············································· 4分
所以抛物线的表达式是.····················· 5分
(2)可设,于是
························································································· 6分
从而支柱EF的长度是米.··································································· 7分
(3)设是隔离带的宽,是三辆车的宽度和,
则点坐标是.······························································································· 8分
过点作垂直交抛物线于,则.················ 9分
根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.····························· 10分
例2、(2008内江)如图4,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.
|
|
A (0, 2.5), B (2, 2.5), C (0.5, 1)
|
解析式可得一个方程组 c=2.5
4a+2b+c=2.5
0.25a+0.5b+c=1
解之得:a=2, b=-4, c=2.5
所以y= 2x2-4x+2.5
当x=1时, y=2-4+2.5=0.5