14.对于两物体碰撞前后速度在同一直线上,且无机械能损失的碰撞过程,可以简化为如下模型:A、B两物体位于光滑水平面上,仅限于沿同一直线运动。当它们之间的距离大于等于某一定值d时,相互作用力为零;当它们之间的距离小于d时,存在大小恒为F的斥力。
设A物体质量m1=1.0 kg,开始时静止在直线上某点;B物体质量m2=3.0 kg,以速度v0从远处沿该直线向A运动,如图所示。若d=0.10 m,F=0.60 N,v0=0.20 m/s,求:
(1)相互作用过程中A、B加速度的大小;
(2)从开始相互作用到A、B间的距离最小时,系统(物体组)动能的减少量;
(3)A、B间的最小距离。
答案 0.6 、0.2; 0.015J; 0.075m
13.如图,长木板ab的b端固定一档板,木板连同档板的质量为M=4.0 kg,a、b间距离s=2.0 m。木板位于光滑水平面上。在木板a端有一小物块,其质量m=1.0 kg,小物块与木板间的动摩擦因数μ=0.10,它们都处于静止状态。现令小物块以初速v0=4.0 m/s沿木板向前滑动,直到和档板相碰。碰撞后,小物块恰好回到a端而不脱离木板。求碰撞过程中损失的机械能。
答案 E1=·-2μmgs
代入数据得E1=2.4 J
12. 如图所示,在一光滑的水平面上有两块相同的木板B和C。重物A(视为质点)位于B的右端,A、B、C的质量相等,现A和B以同一速度滑向静止的C,B与C发生正碰。碰后B和C粘在一起运动,A在C上滑行,A与C有摩擦力。已知A滑到C的右端而未掉下。试问:从B、C发生正碰到A刚移动到C右端期间,C所走过的距离是C板长度的多少倍?
答案 =
11.质量为M的小物块A静止在离地面高h的水平桌面的边缘,质量为m的小物块B沿桌面向A运动并以速度v0与之发生正碰(碰撞时间极短)。碰后A离开桌面,其落地点离出发点的水平距离为L。碰后B反向运动。求B后退的距离。已知B与桌面间的动摩擦因数为μ。重力加速度为g。
答案 l=(-v0)2
10.如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,另一端与质量为m2的挡板B相连,弹簧处于原长时,B恰位于滑道的末端O点。A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM段A、B与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g,求
(1)物块A在与挡板B碰撞前瞬间速度v的大小;
(2)弹簧最大压缩量为d时的弹性势能EP(设弹簧处于原长时弹性势能为零)。
答案 (1)
(2)
9.在光滑水平面上,两球沿球心连线以相等速率相向而行,并发生碰撞,下列现象可能的是(A)若两球质量相同,碰后以某一相等速率互相分开
(B)若两球质量相同,碰后以某一相等速率同向而行
(C)若两球质量不同,碰后以某一相等速率互相分开
(D)若两球质量不同,碰后以某一相等速率同向而行
8.质量为m的钢球自高处落下,以速率v1碰地,竖直向上弹回,碰撞时间极短,离地的速率为v2.在碰撞过程中,地面对钢球的冲量的方向和大小为
(A)向下,m(v1-v2) (B)向下,m(v1+v2)
(C)向上,m(v1-v2) (D)向上,m(v1+v2)
7.在光滑的水平面上动能为E0,动量大小为p0的小钢球1与静止小钢球2发生碰撞,碰撞前后球1的运动方向相反,将碰后球1的动能和动量的大小分别记为E1、p1,球2的动能和动量的大小分别记为E2、p2,则必有
(A)E1<E0 (B)p1<p0 (C)E2>E0 (D)p2>p0
6.在高速公路上发生一起交通事故,一辆质量为1500 kg向南行驶的长途客车迎面撞上了一质量为3000 kg向北行驶的卡车,碰后两辆车接在一起,并向南滑行了一小段距离后停止.根据测速仪的测定,长途客车碰前以20 m/s的速率行驶,由此可判断卡车碰前的行驶速率( )
A.小于10 m/s B.大于10 m/s小于20 m/s
C.大于20 m/s小于30 m/s D.大于30 m/s小于40 m/s
5.在光滑水平地面上有两个相同的弹性小球A、B,质量都为m。现B球静止,A球向B球运动,发生正碰。已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为Ep,则碰前A球的速度等于( )
A. B. C.2 D.2