网址:http://m.1010jiajiao.com/timu_id_97698[举报]
一、选择题
1.D 2.B 3.B 4.B 5.A 6.B 7.C 8.B 9.C 10.A 11.B 12.D
2,4,6
三、解答题
17.(本小题满分12分)
解证:(I)
由余弦定理得 …………4分
又 …………6分
(II)
…………10分
即函数的值域是 …………12分
18.(本小题满分12分)
解:(I)依题意
…………2分
…………4分
…………5分
(II) …………6分
…………7分
…………9分
…………12分
19.(本小题满分12分)
(I)证明:依题意知:
…4分
(II)由(I)知平面ABCD
∴平面PAB⊥平面ABCD. …………4分
在PB上取一点M,作MN⊥AB,则MN⊥平面ABCD,
设MN=h
则
…………6分
要使
即M为PB的中点. …………8分
建立如图所示的空间直角坐标系
则A(0,0,0),B(0,2,0),
C(1,1,0),D(1,0,0),
P(0,0,1),M(0,1,)
由(I)知平面,则
的法向量。 …………10分
又为等腰
因为
所以AM与平面PCD不平行. …………12分
20.(本小题满分12分)
解:(I)已知,
只须后四位数字中出现2个0和2个1.
(II)的取值可以是1,2,3,4,5,.
…………8分
的分布列是
1
2
3
4
5
P
(另解:记
.)
21.(本小题满分12分)
解:(I)设M,
由
于是,分别过A、B两点的切线方程为
①
② …………2分
解①②得 ③ …………4分
设直线l的方程为
④ …………6分
④代入③得
即M
故M的轨迹方程是 …………7分
(III)
的面积S最小,最小值是4 …………11分
此时,直线l的方程为y=1 …………12分
22.(本小题满分14分)
解:(I) …………2分
由 …………4分
当的单调增区间是,单调减区间是
(II)当上单调递增,因此
上单调递减,
所以值域是 …………12分
因为在
…………13分
所以,a只须满足
解得
即当、使得成立.
…………14分
C.选修4-4:坐标系与参数方程在极坐标系下,已知圆O:和直线,(1)求圆O和直线的直角坐标方程;(2)当时,求直线与圆O公共点的一个极坐标.D.选修4-5:不等式证明选讲对于任意实数和,不等式恒成立,试求实数的取值范围.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B错;+==≥4,故A错;由基本不等式得≤=,即+≤,故C正确;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D错.故选C.
.定义域为R的函数满足,且当时,,则当时,的最小值为( )
(A) (B) (C) (D)
.过点作圆的弦,其中弦长为整数的共有 ( )
A.16条 B. 17条 C. 32条 D. 34条