摘要:∴当t=时取得最小值.最小值为2+3.即k≤2+3. ∴k的取值范围为(-∞.2+3]
网址:http://m.1010jiajiao.com/timu_id_94579[举报]
如图,某小区准备绿化一块直径为
的半圆形空地,
外的地方种草,
的内接正方形
为一水池,其余地方种花.若
,设
的面积为
,正方形
的面积为
,将比值
称为“规划合理度”.
(1)试用
,
表示
和
.
(2)当
为定值,
变化时,求“规划合理度”取得最小值时的角
的大小.
![]()
【解析】第一问中利用在![]()
ABC中
,
=
设正方形的边长为
则 ![]()
然后解得
第二问中,利用
而
=![]()
借助于
为减函数
得到结论。
(1)、 如图,在![]()
ABC中
,
=
设正方形的边长为
则 ![]()
=
![]()
(2)、
而
=
∵0 <
<
,又0 <2
<
,
0<t£1
为减函数
当
时
取得最小值为
此时
查看习题详情和答案>>
设三次函数
在x=1处取得极值,其图象在x=m处的切线的斜率为-3a.
(1)求证:
;
(2)若函数y=f(x)在区间[s,t]上单调递增,求
的取值范围;
(3)问是否存在实数k(k是与a,b,c,d无关的常数),当x≥k时,恒有
恒成立?若存在,试求出k的最小值;若不存在,请说明理由.
设三次函数f(x)=ax3+bx2+cx+d(a<b<c),在x=1处取得极值,其图像在x=m处的切线的斜率为-3a.
(1)求证:
;
(2)若函数y=f(x)在区间[s,t]上单调递增,求|s-t|的取值范围;
(3)问是否存在实数k(k是与a,b,c,d无关的常数),当x≥k时,恒有
恒成立?若存在,试求出k的最小值;若不存在,请说明理由.