摘要:[解答](I)由题意及正弦定理.得.
网址:http://m.1010jiajiao.com/timu_id_94438[举报]
设数列
的各项均为正数.若对任意的
,存在
,使得
成立,则称数列
为“Jk型”数列.
(1)若数列
是“J2型”数列,且
,
,求
;
(2)若数列
既是“J3型”数列,又是“J4型”数列,证明:数列
是等比数列.
【解析】1)中由题意,得
,
,
,
,…成等比数列,且公比
,
所以.![]()
(2)中证明:由{
}是“j4型”数列,得
,…成等比数列,设公比为t. 由{
}是“j3型”数列,得
,…成等比数列,设公比为
;
,…成等比数列,设公比为
;
…成等比数列,设公比为
;
查看习题详情和答案>>
已知函数
(
为实数).
(Ⅰ)当
时,求
的最小值;
(Ⅱ)若
在
上是单调函数,求
的取值范围.
【解析】第一问中由题意可知:
. ∵
∴
∴![]()
.
当
时,
;
当
时,
. 故
.
第二问![]()
.
当
时,
,在
上有
,
递增,符合题意;
令
,则![]()
,∴
或
在
上恒成立.转化后解决最值即可。
解:(Ⅰ) 由题意可知:
. ∵
∴
∴![]()
.
当
时,
;
当
时,
. 故
.
(Ⅱ) ![]()
.
当
时,
,在
上有
,
递增,符合题意;
令
,则![]()
,∴
或
在
上恒成立.∵二次函数
的对称轴为
,且![]()
∴
或![]()
或![]()
或![]()
或
. 综上![]()
查看习题详情和答案>>
若函数
在定义域内存在区间
,满足
在
上的值域为
,则称这样的函数
为“优美函数”.
(Ⅰ)判断函数
是否为“优美函数”?若是,求出
;若不是,说明理由;
(Ⅱ)若函数
为“优美函数”,求实数
的取值范围.
【解析】第一问中,利用定义,判定由题意得
,由
,所以![]()
第二问中, 由题意得方程
有两实根
设
所以关于m的方程
在
有两实根,
即函数
与函数
的图像在
上有两个不同交点,从而得到t的范围。
解(I)由题意得
,由
,所以
(6分)
(II)由题意得方程
有两实根
设
所以关于m的方程
在
有两实根,
即函数
与函数
的图像在
上有两个不同交点。
![]()
查看习题详情和答案>>