摘要:当时..在为凸函数
网址:http://m.1010jiajiao.com/timu_id_92540[举报]
设函数y=f(x)在(a,b)上的导函数为f'(x),f'(x)在(a,b)上的导函数为f''(x),若在(a,b)上,f''(x)<0恒成立,则称函数f(x)在(a,b)上为“凸函数”.已知f(x)=
x4-
mx3-
x2.
(Ⅰ)若f(x)为区间(-1,3)上的“凸函数”,则实数m=
(Ⅱ)若当实数m满足|m|≤2时,函数f(x)在(a,b)上总为“凸函数”,则b-a的最大值为 .
查看习题详情和答案>>
| 1 |
| 12 |
| 1 |
| 6 |
| 3 |
| 2 |
(Ⅰ)若f(x)为区间(-1,3)上的“凸函数”,则实数m=
(Ⅱ)若当实数m满足|m|≤2时,函数f(x)在(a,b)上总为“凸函数”,则b-a的最大值为
设函数y=f(x)在(a,b)上的导函数为f′(x),f′(x)在(a,b)上的导函数为f″(x),若在a,b)上,f″(x)<0恒成立,则称函数函数f(x)在(a,b)上为“凸函数”.已知当m≤2时,f(x)=
x3-
mx2+x在(-1,2)上是“凸函数”.则f(x)在(-1,2)上( )
| 1 |
| 6 |
| 1 |
| 2 |
| A、既有极大值,也有极小值 |
| B、既有极大值,也有最小值 |
| C、有极大值,没有极小值 |
| D、没有极大值,也没有极小值 |