摘要:(Ⅱ)设与圆C相交于点A.B.求点P到A.B两点的距离之积.
网址:http://m.1010jiajiao.com/timu_id_85510[举报]
设椭圆C:
+
=1(a>b>0)的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆C与x轴正半轴于点P、Q,且
=
.
(1)求椭圆C的离心率;
(2)若过A、Q、F三点的圆恰好与直线l:x+
y+3=0相切,求椭圆C的方程.
查看习题详情和答案>>
x2 |
a2 |
y2 |
b2 |
AP |
8 |
5 |
PQ |
(1)求椭圆C的离心率;
(2)若过A、Q、F三点的圆恰好与直线l:x+
3 |
设椭圆C:
+
=1(a>b>0)过点M(
,1),且左焦点为F1(-
,0)
(Ⅰ)求椭圆C的方程;
(Ⅱ)当过点P(4,1)的动直线l与椭圆C相交于两不同点A,B时,在线段AB上取点Q,满足|
|•|
|=|
|•|
|,证明:点Q总在某定直线上.
查看习题详情和答案>>
x2 |
a2 |
y2 |
b2 |
2 |
2 |
(Ⅰ)求椭圆C的方程;
(Ⅱ)当过点P(4,1)的动直线l与椭圆C相交于两不同点A,B时,在线段AB上取点Q,满足|
AP |
QB |
AQ |
PB |
设椭圆C:
+
=1(a>b>0)的左.右焦点分别为F1F2,上顶点为A,过点A与AF2垂直的直线交x轴负半轴于点Q,且2
+
=
.
(1)若过A.Q.F2三点的圆恰好与直线l:x-
y-3=0相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M.N两点.试证明:
+
为定值;②在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,如果存在,求出m的取值范围,如果不存在,说明理由.
查看习题详情和答案>>
x2 |
a2 |
y2 |
b2 |
F1F2 |
F2Q |
0 |
(1)若过A.Q.F2三点的圆恰好与直线l:x-
3 |
(2)在(1)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M.N两点.试证明:
1 |
|F2M| |
1 |
|F2N| |