网址:http://m.1010jiajiao.com/timu_id_8077[举报]
![](http://thumb.zyjl.cn/pic3/upload/images/201312/52/a135b969.png)
(1)解方程:x2+3x-2=0;
(2)如图,在边长为1个单位长度的正方形方格纸中建立直角坐标系,△ABC各顶点的坐标为:A(-5,4)、B(-1,1)、C(-5,1).
①将△ABC绕着原点O顺时针旋转90°得到△A′B′C′,请在图中画出△A′B′C′;
②写出A′点的坐标.
25.(本小题满分14分)
如图13,二次函数
的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为
。
(1)求该二次函数的关系式;
(2)过y轴上的一点M(0,m)作y轴上午垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围;
(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。
查看习题详情和答案>>(本小题满分12分)如图,在平面直角坐标系中,直线:
与
轴交于点
,与
轴交于点
,抛物线
过点
、点
,且与
轴的另一交点为
,其中
>0,又点
是抛物线的对称轴
上一动点.
(1)求点的坐标,并在图1中的
上找一点
,使
到点
与点
的距离之和最小;
(2)若△周长的最小值为
,求抛物线的解析式及顶点
的坐标;
(3)如图2,在线段上有一动点
以每秒2个单位的速度从点
向点
移动(
不与端点
、
重合),过点
作
∥
交
轴于点
,设
移动的时间为
秒,试把△
的面积
表示成时间
的函数,当
为何值时,
有最大值,并求出最大值.
查看习题详情和答案>>
(本小题满分12分)
某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y =x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳
x2 元的附加费,设月利润为w外(元)(利润 = 销售额-成本-附加费).
1.(1)当x = 1000时,y = 元/件,w内 = 元;
2.(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);
3.(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;
4.(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?
参考公式:抛物线的顶点坐标是
.
查看习题详情和答案>>