摘要:23.在边长为4和6的矩形中作等腰三角形.使等腰三角形的一条边是矩形的长或宽.第三个顶点在矩形的边上.求所作三角形的面积.(注:形状相同的三角形按一种计算.)
网址:http://m.1010jiajiao.com/timu_id_762522[举报]
(本小题满分14分)
在如图所示的一张矩形纸片
(
)中,将纸片折叠一次,使点
与
重合,再展开,折痕
交
边于
,交
边于
,分别连结
和
.
![]()
1.(1)求证:四边形
是菱形;
2.(2)过
作
交
于
,求证:![]()
3.(3)若
,
的面积为
,求
的周长;
查看习题详情和答案>>
(本小题满分12分)如图1,已知抛物线经过坐标原点
和
轴上另一点
,顶点
的坐标为
;矩形
的顶点
与点
重合,
分别在
轴、
轴上,且
,
.
(1)求该抛物线所对应的函数关系式;
(2)将矩形
以每秒1个单位长度的速度从图1所示的位置沿
轴的正方向匀速平行移动,同时一动点
也以相同的速度从点
出发向
匀速移动.设它们运动的时间为
秒(
),直线
与该抛物线的交点为
(如图2所示).
①当
时,判断点
是否在直线
上,并说明理由;
②设以
为顶点的多边形面积为
,试问
是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
查看习题详情和答案>>
(1)求该抛物线所对应的函数关系式;
(2)将矩形
①当
②设以
(本小题满分12分)如图1,已知抛物线经过坐标原点
和
轴上另一点
,顶点
的坐标为
;矩形
的顶点
与点
重合,
分别在
轴、
轴上,且
,
.
(1)求该抛物线所对应的函数关系式;
(2)将矩形
以每秒1个单位长度的速度从图1所示的位置沿
轴的正方向匀速平行移动,同时一动点
也以相同的速度从点
出发向
匀速移动.设它们运动的时间为
秒(
),直线
与该抛物线的交点为
(如图2所示).
①当
时,判断点
是否在直线
上,并说明理由;
②设以
为顶点的多边形面积为
,试问
是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.![]()