摘要:(1)若和是等腰直角三角形.且.则 是 三角形.
网址:http://m.1010jiajiao.com/timu_id_762468[举报]
如图,平面直角坐标系中有一矩形纸片OABC,O为原点,点A,C分别在x轴,y轴上,点B坐标为(m,
)(其中m>0),在BC边上选取适当的点E和点F,将△OCE沿OE翻折,得到△OGE;再将△ABF沿AF翻折,恰好使点B与点G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求过点O,G,A的抛物线的解析式和对称轴;
(3)在抛物线的对称轴上是否存在点P,使得△OPG是等腰三角形?若不存在,请说明理由;若存在,直接答出所有满足条件的点P的坐标(不要求写出求解过程). 查看习题详情和答案>>
| 2 |
(2)求过点O,G,A的抛物线的解析式和对称轴;
(3)在抛物线的对称轴上是否存在点P,使得△OPG是等腰三角形?若不存在,请说明理由;若存在,直接答出所有满足条件的点P的坐标(不要求写出求解过程). 查看习题详情和答案>>
| 1 | 2 |
(1)用含x的解析式表示S,写出x的取值范围.
(2)若点P在第一象限内,当点P所在的直线与X轴,Y轴分别相交于点B和C,且满足△BAP∽△CPO,求此时△OPA的面积.
(3)是否存在点P,使△OPA是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由. 查看习题详情和答案>>