摘要:26.已知二次函数y=x2-x+c..B在二次函数y=x2-x+c的图象上.求此二次函数的最小值,(2)若点D(x1.y1).E(x2.y2).P在二次函数y=x2-x+c的图象上.且D.E两点关于坐标原点成中心对称.连接OP.当2≤OP≤2+时.试判断直线DE与抛物线y=x2-x+c+的交点个数.并说明理由.
网址:http://m.1010jiajiao.com/timu_id_761524[举报]
已知二次函数y=-x2+2x+ 图象交x轴于点A,B(A在B的左侧),交y轴于点C,点D是该函数图像上一点,且点D的横坐标为3,连接BD.点E是线段AB上一动点(不与点A重合),过E作EF⊥AB交射线AD于点F,以EF为一边在EF的右侧作正方形EFGH.设E点的坐标为(t,0).
](1)求射线AD的解析式;
(2)在线段AB上是否存在点E,使△OCG为等腰三角形?
若存在,求正方形EFGH的边长;若不存在,请说明理由;
(3)设正方形EFGH与△ABD重叠部分面积为S,求S与t的函数关系式.
已知:二次函数y=x2+bx+c与x轴相交于A(x1,0)、B(x2,0)两点,其顶点坐标为P(,),AB=|x1-x2|,若S△APB=1,则b与c的关系式是( ).
A.b2-4c+1=0 | B.b2-4c-1=0 | C.b2-4c+4=0 | D.b2-4c-4=0 |
已知:二次函数的图象与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB<OC)是方程x2-10x+16=0的两个根,且A点坐标为(-6,0).
(1)求此二次函数的表达式;
(2)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
(3)在(2)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.
查看习题详情和答案>>