摘要:v(1)求抛物线的解析式,
网址:http://m.1010jiajiao.com/timu_id_759350[举报]
(2012•房山区一模)如图(1),在平面直角坐标系中,O为坐标原点,抛物线y=ax2+8ax+16a+6经过点B(0,4).
(1)求抛物线的解析式;
(2)设抛物线的顶点为D,过点D、B作直线交x轴于点A,点C在抛物线的对称轴上,且C点的纵坐标为-4,连接BC、AC.求证:△ABC是等腰直角三角形;
(3)在(2)的条件下,将直线DB沿y轴向下平移,平移后的直线记为l,直线l 与x轴、y轴分别交于点A′、B′,是否存在直线l,使△A′B′C是直角三角形,若存在求出l的解析式,若不存在,请说明理由.
查看习题详情和答案>>
(1)求抛物线的解析式;
(2)设抛物线的顶点为D,过点D、B作直线交x轴于点A,点C在抛物线的对称轴上,且C点的纵坐标为-4,连接BC、AC.求证:△ABC是等腰直角三角形;
(3)在(2)的条件下,将直线DB沿y轴向下平移,平移后的直线记为l,直线l 与x轴、y轴分别交于点A′、B′,是否存在直线l,使△A′B′C是直角三角形,若存在求出l的解析式,若不存在,请说明理由.
如图所示,已知A点的坐标为(-1,0),点B的坐标是(9,0)以AB为直径作⊙O′,交y轴负半轴于点C,连接AC、BC,过A、B、C作抛物线
(1)求抛物线的解析式;
(2)点E是AC延长线上的一点,∠BCE的平分线CD交⊙O′于点D,连接BD求BD直线的解析式;
(3)在(2)的条件下,点P是直线BC下方的抛物线上一动点,当点P运动到什么位置时,△PCD的面积是△BCD面积的
,求此时点P的坐标.
查看习题详情和答案>>
(1)求抛物线的解析式;
(2)点E是AC延长线上的一点,∠BCE的平分线CD交⊙O′于点D,连接BD求BD直线的解析式;
(3)在(2)的条件下,点P是直线BC下方的抛物线上一动点,当点P运动到什么位置时,△PCD的面积是△BCD面积的
1 | 3 |
如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0)、B(3,0),与y轴交于点C(0,3).
(1)求抛物线的解析式及顶点D的坐标;
(2)若P为线段BD上的一个动点,点P的横坐标为m,试用含m的代数式表示点P的纵坐标;
(3)过点P作PM⊥x轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标;
(4)若点F是第一象限抛物线上的一个动点,过点F作FQ∥AC交x轴于点Q.当点F的坐标为
查看习题详情和答案>>
(1)求抛物线的解析式及顶点D的坐标;
(2)若P为线段BD上的一个动点,点P的横坐标为m,试用含m的代数式表示点P的纵坐标;
(3)过点P作PM⊥x轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标;
(4)若点F是第一象限抛物线上的一个动点,过点F作FQ∥AC交x轴于点Q.当点F的坐标为
(2,3)
(2,3)
时,四边形FQAC是平行四边形;当点F的坐标为(
,
)
11 |
4 |
15 |
16 |
(
,
)
时,四边形FQAC是等腰梯形(直接写出结果,不写求解过程).11 |
4 |
15 |
16 |