摘要:.我们已经学习了直角三角形中的边角关系.在Rt△ACD中sin∠A= .所以CD= .而S△ABC=AB?CD.于是可将三角形面积公式变形.得S△ABC= .①其文字语言表述为:三角形的面积等于两边及其夹角正弦积的一半.这就是我们将要在高中学习的正弦定理.
网址:http://m.1010jiajiao.com/timu_id_749388[举报]
课题研究
(1)如图(1),我们已经学习了直角三角形中的边角关系,在Rt△ACD中,sin∠A= ,所以CD= ,而S△ABC=
AB•CD,于是可将三角形面积公式变形,得S△ABC= .①其文字语言表述为:三角形的面积等于两边及其夹角正弦积的一半.这就是我们将要在高中学习的正弦定理.
(2)如图(2),在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β.
∵S△ABC=S△ADC+S△BDC,由公式①,得
AC•BC•sin(α+β)=
AC•CD•sinα+
BC•CD•sinβ,即AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ②.
请你利用直角三角形边角关系,消去②中的AC、BC、CD,将得到新的结论.并写出解决过程.
(3)利用(2)中的结论,试求sin75°和sin105°的值,并比较其大.
查看习题详情和答案>>
(1)如图(1),我们已经学习了直角三角形中的边角关系,在Rt△ACD中,sin∠A=
1 |
2 |
(2)如图(2),在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β.
∵S△ABC=S△ADC+S△BDC,由公式①,得
1 |
2 |
1 |
2 |
1 |
2 |
请你利用直角三角形边角关系,消去②中的AC、BC、CD,将得到新的结论.并写出解决过程.
(3)利用(2)中的结论,试求sin75°和sin105°的值,并比较其大.
查看习题详情和答案>>
课题研究
(1)如图(1),我们已经学习了直角三角形中的边角关系,在Rt△ACD中,sin∠A=______,所以CD=______,而S△ABC=AB•CD,于是可将三角形面积公式变形,得S△ABC=______.①其文字语言表述为:三角形的面积等于两边及其夹角正弦积的一半.这就是我们将要在高中学习的正弦定理.
(2)如图(2),在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β.
∵S△ABC=S△ADC+S△BDC,由公式①,得
,即②.
请你利用直角三角形边角关系,消去②中的AC、BC、CD,将得到新的结论.并写出解决过程.
(3)利用(2)中的结论,试求sin75°和sin105°的值,并比较其大.
查看习题详情和答案>>
课题研究
(1)如图(1),我们已经学习了直角三角形中的边角关系,在Rt△ACD中,sin∠A=______,所以CD=______,而S△ABC=AB•CD,于是可将三角形面积公式变形,得S△ABC=______.①其文字语言表述为:三角形的面积等于两边及其夹角正弦积的一半.这就是我们将要在高中学习的正弦定理.
(2)如图(2),在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β.
∵S△ABC=S△ADC+S△BDC,由公式①,得
,即②.
请你利用直角三角形边角关系,消去②中的AC、BC、CD,将得到新的结论.并写出解决过程.
(3)利用(2)中的结论,试求sin75°和sin105°的值,并比较其大.
查看习题详情和答案>>
(1)如图(1),我们已经学习了直角三角形中的边角关系,在Rt△ACD中,sin∠A=______,所以CD=______,而S△ABC=AB•CD,于是可将三角形面积公式变形,得S△ABC=______.①其文字语言表述为:三角形的面积等于两边及其夹角正弦积的一半.这就是我们将要在高中学习的正弦定理.
(2)如图(2),在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β.
∵S△ABC=S△ADC+S△BDC,由公式①,得
,即②.
请你利用直角三角形边角关系,消去②中的AC、BC、CD,将得到新的结论.并写出解决过程.
(3)利用(2)中的结论,试求sin75°和sin105°的值,并比较其大.
查看习题详情和答案>>