摘要:4.已知:...则三个数的大小关系是
网址:http://m.1010jiajiao.com/timu_id_747678[举报]
同学们,学习了无理数之后,我们已经把数的领域扩大到了实数的范围,这说明我们的知识越来越丰富了!可是,无理数究竟是一个什么样的数呢?下面让我们在几个具体的图形中认识一下无理数.
(1)如图①△ABC是一个边长为2的等腰直角三角形.它的面积是2,把它沿着斜边的高线剪开拼成如图②的正方形ABCD,则这个正方形的面积也就等于正方形的面积即为2,则这个正方形的边长就是
,它是一个无理数.
(2)如图,直径为1个单位长度的圆从原点O沿数轴向右滚动一周,圆上的一点P(滚动时与点O重合)由原点到达点O′,则OO′的长度就等于圆的周长π,所以数轴上点O′代表的实数就是
(3)如图,在Rt△ABC中,∠C=90°,AC=2,BC=1,根据勾股定理可求得AB=
,它是一个无理数.
好了,相信大家对无理数是不是有了更具体的认识了,那么你是也试着在图形中作出两个无理数吧:
1、你能在6×8的网格图中(每个小正方形边长均为1),画出一条长为
的线段吗?
2、学习了实数后,我们知道数轴上的点与实数是一一对应的关系.那么你能在数轴上找到表示 -
的点吗?
查看习题详情和答案>>
(1)如图①△ABC是一个边长为2的等腰直角三角形.它的面积是2,把它沿着斜边的高线剪开拼成如图②的正方形ABCD,则这个正方形的面积也就等于正方形的面积即为2,则这个正方形的边长就是
2 |
(2)如图,直径为1个单位长度的圆从原点O沿数轴向右滚动一周,圆上的一点P(滚动时与点O重合)由原点到达点O′,则OO′的长度就等于圆的周长π,所以数轴上点O′代表的实数就是
π
π
,它是一个无理数.(3)如图,在Rt△ABC中,∠C=90°,AC=2,BC=1,根据勾股定理可求得AB=
5 |
5 |
好了,相信大家对无理数是不是有了更具体的认识了,那么你是也试着在图形中作出两个无理数吧:
1、你能在6×8的网格图中(每个小正方形边长均为1),画出一条长为
10 |
2、学习了实数后,我们知道数轴上的点与实数是一一对应的关系.那么你能在数轴上找到表示 -
5 |
同学们,学习了无理数之后,我们已经把数的领域扩大到了实数的范围,这说明我们的知识越来越丰富了!可是,无理数究竟是一个什么样的数呢?下面让我们在几个具体的图形中认识一下无理数.
(1)如图①△ABC是一个边长为2的等腰直角三角形.它的面积是2,把它沿着斜边的高线剪开拼成如图②的正方形ABCD,则这个正方形的面积也就等于正方形的面积即为2,则这个正方形的边长就是,它是一个无理数.
(2)如图,直径为1个单位长度的圆从原点O沿数轴向右滚动一周,圆上的一点P(滚动时与点O重合)由原点到达点O′,则OO′的长度就等于圆的周长π,所以数轴上点O′代表的实数就是______,它是一个无理数.
(3)如图,在Rt△ABC中,∠C=90°,AC=2,BC=1,根据勾股定理可求得AB=______,它是一个无理数.
好了,相信大家对无理数是不是有了更具体的认识了,那么你是也试着在图形中作出两个无理数吧:
1、你能在6×8的网格图中(每个小正方形边长均为1),画出一条长为的线段吗?
2、学习了实数后,我们知道数轴上的点与实数是一一对应的关系.那么你能在数轴上找到表示 的点吗?
查看习题详情和答案>>
已知:函数y=-
的图象上有三个点P1(-1,y1),P2(-2,y2),P3(1,y3),则y1,y2,y3的大小关系是( )?
k2+1 |
x |
A、y1>y2>y3 |
B、y2>y1>y3 |
C、y3>y2>y1 |
D、y3>y1>y2? |
已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:
(1)当x=-1时,y的值为______;
(2)点A(x1,y1)、B(x2,y2)在该函数的图象上,则当1<x1<2,3<x2<4时,y1与y2的大小关系是______;
(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式:______;
(4)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)都在二次函数y=ax2+bx+c的图象上,问:当m<-3时,y1、y2、y3的值一定能作为同一个三角形三边的长吗?为什么?
查看习题详情和答案>>
x | … | 1 | 2 | 3 | 4 | 5 | … | |
y | … | 4 | 1 | 1 | 4 | 9 | … |
(2)点A(x1,y1)、B(x2,y2)在该函数的图象上,则当1<x1<2,3<x2<4时,y1与y2的大小关系是______;
(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式:______;
(4)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)都在二次函数y=ax2+bx+c的图象上,问:当m<-3时,y1、y2、y3的值一定能作为同一个三角形三边的长吗?为什么?
查看习题详情和答案>>
已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:
x | … | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 4 | 1 | 0 | 1 | 4 | 9 | … |
(2)点A(x1,y1)、B(x2,y2)在该函数的图象上,则当1<x1<2,3<x2<4时,y1与y2的大小关系是______;
(3)若将此图象沿x轴向右平移3个单位,请写出平移后图象所对应的函数关系式:______;
(4)设点P1(m,y1)、P2(m+1,y2)、P3(m+2,y3)都在二次函数y=ax2+bx+c的图象上,问:当m<-3时,y1、y2、y3的值一定能作为同一个三角形三边的长吗?为什么? 查看习题详情和答案>>