摘要:11.如下图.已知点O是△ABC的∠ABC和∠ACB平分线的交点.过O作EF平行于BC交AB于E.交AC于F.AB=12.AC=18.则△AEF的周长是
网址:http://m.1010jiajiao.com/timu_id_743545[举报]
已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.
如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动、DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5)解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由;
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.
查看习题详情和答案>>
如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动、DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5)解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由;
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.
查看习题详情和答案>>
已知△ABC,
①如图1,若P点是∠ABC和∠ACB的角平分线的交点;
②如图2,若P点是∠ABC和∠ACE的角平分线的交点;
③如图3,若P点是∠CBF和∠BCE的角平分线的交点.
(1)探究上述三种情况下,∠P与∠A的数量关系(直接写出结论);
(2)任选一种情况加以证明.
查看习题详情和答案>>
①如图1,若P点是∠ABC和∠ACB的角平分线的交点;
②如图2,若P点是∠ABC和∠ACE的角平分线的交点;
③如图3,若P点是∠CBF和∠BCE的角平分线的交点.
(1)探究上述三种情况下,∠P与∠A的数量关系(直接写出结论);
(2)任选一种情况加以证明.
查看习题详情和答案>>
已知△ABC中,∠BAC=100°.
(1)若∠ABC和∠ACB的角平分线交于点O,如图1所示,试求∠BOC的大小;
(2)若∠ABC和∠ACB的三等分线(即将一个角平均分成三等分的射线)相交于O,O1,如图2所示,试求∠BOC的大小;
(3)如此类推,若∠ABC和∠ACB的n等分线自下而上依次相交于O,O1,O2…,如图3所示,试探求∠BOC的大小与n的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.
查看习题详情和答案>>
(1)若∠ABC和∠ACB的角平分线交于点O,如图1所示,试求∠BOC的大小;
(2)若∠ABC和∠ACB的三等分线(即将一个角平均分成三等分的射线)相交于O,O1,如图2所示,试求∠BOC的大小;
(3)如此类推,若∠ABC和∠ACB的n等分线自下而上依次相交于O,O1,O2…,如图3所示,试探求∠BOC的大小与n的关系,并判断当∠BOC=170°时,是几等分线的交线所成的角.
已知:如图1,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ. 若设运动的时间为t(s)( 0<t<2 ),解答下列问题:
(1)t为何值时,PQ∥BC?
(2)设△AQP的面积为(),求与t之间的函数关系;
(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;
(4)如图2,连接PC,并把△PQC沿QC翻折,得到四边形,那么是否存在t,使四边形为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.
已知:如图1,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ. 若设运动的时间为t(s)( 0<t<2 ),解答下列问题:
(1)t为何值时,PQ∥BC?
(2)设△AQP的面积为(),求与t之间的函数关系;
(3)是否存在某一时刻t,使线段PQ恰好把Rt△ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;
(4)如图2,连接PC,并把△PQC沿QC翻折,得到四边形,那么是否存在t,使四边形为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.
查看习题详情和答案>>