摘要:(1)平移已知直角三角形.使直角顶点与点重合.画出平移后的三角形.
网址:http://m.1010jiajiao.com/timu_id_733874[举报]
已知,如图,直角坐标系中的等腰梯形ABCD,AB∥CD,下底AB在x轴上,D在y轴上,M为AD的中点,过O作腰BC的垂线交BC于点E.
(1)求证:OM⊥OE;
(2)若等腰梯形中AD所在的直线的解析式为y=
x+4,且
=
,求过等腰梯形ABCD的三个顶点的抛物线y=ax2+bx+c的解析式;
(3)若点M在梯形ABCD内沿水平方向移动到N,且使四边形MNCD为平行四边形,抛物线上是否存在一点P,使S△PAB与四边形MNCD的面积相等?若存在,求出P点的坐标;若不存在,请说明理由. 查看习题详情和答案>>
(1)求证:OM⊥OE;
(2)若等腰梯形中AD所在的直线的解析式为y=
4 |
3 |
DC |
AB |
1 |
4 |
(3)若点M在梯形ABCD内沿水平方向移动到N,且使四边形MNCD为平行四边形,抛物线上是否存在一点P,使S△PAB与四边形MNCD的面积相等?若存在,求出P点的坐标;若不存在,请说明理由. 查看习题详情和答案>>
已知∠AOB=90°,OM是∠AOB的平分线,按以下要求解答问题:
(1)将三角板的直角顶点P在射线OM上移动,两直角边分别与边OA,OB交于点C,D.
①在图甲中,证明:PC=PD;
②在图乙中,点G是CD与OP的交点,且PG=
PD,求△POD与△PDG的面积之比;
(2)将三角板的直角顶点P在射线OM上移动,一直角边与边OB交于点D,OD=1,另一直角边与直线OA,直线OB分别交于点C,E,使以P,D,E为顶点的三角形与△OCD相似,在图丙中作出图形,试求OP的长.
查看习题详情和答案>>
(1)将三角板的直角顶点P在射线OM上移动,两直角边分别与边OA,OB交于点C,D.
①在图甲中,证明:PC=PD;
②在图乙中,点G是CD与OP的交点,且PG=
| ||
2 |
(2)将三角板的直角顶点P在射线OM上移动,一直角边与边OB交于点D,OD=1,另一直角边与直线OA,直线OB分别交于点C,E,使以P,D,E为顶点的三角形与△OCD相似,在图丙中作出图形,试求OP的长.
查看习题详情和答案>>
已知抛物线y=x2-2x+m-1与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B.
(1)求m的值;
(2)过A作x轴的平行线,交抛物线于点C,求证:△ABC是等腰直角三角形;
(3)将此抛物线向下平移4个单位后,得到抛物线C′,且与x轴的左半轴交于E点,与y轴交于F点,如图.请在抛物线C′上求点P,使得△EFP是以EF为直角边的直角三角形. 查看习题详情和答案>>
(1)求m的值;
(2)过A作x轴的平行线,交抛物线于点C,求证:△ABC是等腰直角三角形;
(3)将此抛物线向下平移4个单位后,得到抛物线C′,且与x轴的左半轴交于E点,与y轴交于F点,如图.请在抛物线C′上求点P,使得△EFP是以EF为直角边的直角三角形. 查看习题详情和答案>>
在三角形纸片ABC中,已知∠ABC=90°,AB=6,BC=8.过点A作直线l平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线l上的T处,折痕为MN.当点T在直线l上移动时,折痕的端点M、N也随之移动.若限定端点M、N分别在AB、BC边上移动,则线段AT长度的最大值与最小值之和为 (计算结果不取近似值).
查看习题详情和答案>>
已知抛物线y=ax2+bx+c过点C(0,3),顶点P(2,-1),直线x=m(m>3)交x轴于点D,抛物线交x轴于A、B两点(如图10).
(1)①求得抛物线的函数解析式为
②A、B两点的坐标是A(
③该抛物线关于原点成中心对称的抛物线的函数解析式是
④将已知抛物线平移,使顶点落在原点,则平移后得到的新抛物线的函数解析式是
(2)若直线x=m(m>3)上有一点E(E在第一象限),使得以B、E、D为顶点的三角形和以A、C、O为顶点的三角形相似,求E点的坐标(用m的代数式表示)
(3)在(2)成立的条件下,抛物线上是否存在一点F,使得四边形ABEF为平行四边形,若存在,求出m的值及平行四边形ABEF的面积;若不存在,请说明理由.
查看习题详情和答案>>
(1)①求得抛物线的函数解析式为
y=x2-4x+3
y=x2-4x+3
;②A、B两点的坐标是A(
(1,0)
(1,0)
),B((3,0)
(3,0)
);③该抛物线关于原点成中心对称的抛物线的函数解析式是
y=-x2-4x-3
y=-x2-4x-3
;④将已知抛物线平移,使顶点落在原点,则平移后得到的新抛物线的函数解析式是
y=x2
y=x2
.(2)若直线x=m(m>3)上有一点E(E在第一象限),使得以B、E、D为顶点的三角形和以A、C、O为顶点的三角形相似,求E点的坐标(用m的代数式表示)
(3)在(2)成立的条件下,抛物线上是否存在一点F,使得四边形ABEF为平行四边形,若存在,求出m的值及平行四边形ABEF的面积;若不存在,请说明理由.