摘要:中的抛物线交轴于D.E两点.在抛物线上是否存在点P.使得?若存在.请求出点P的坐标,若不存在.请说明理由.
网址:http://m.1010jiajiao.com/timu_id_730785[举报]
抛物线y=ax2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,且当x=0和x=2时,y的值相等.直线y=3x-7与这条抛物线相交于两点,其中一点的横坐标是4,另一点是这条抛物线的顶点M.
(1)求这条抛物线的解析式;
(2)P为线段BM上一点,过点P向x轴引垂线,垂足为Q.若点P在线段BM上运动(点P不与点B、M重合),设OQ的长为t,四边形PQOC的面积为S.求S与t之间的函数关系式及自变量t的取值范围.
(3)对于二次三项式x2-10x+36,小明同学作出如下结论:无论x取什么实数,它的值都不可能等于11.你是否同意他的说法?说明你的理由.
查看习题详情和答案>>
设抛物线C1:y=a1x2+b1x+c1的顶点为(m1,n1),抛物线C2:y=a2x2+b2x+c2的顶点为(m2,n2),如果a1+a2=0,那么我们称抛物线C1与C2关于点(
,
)中心对称.给出抛物线①y=x2+4x+3,抛物线②y=-x2+4x+1.
(1)判断抛物线①与抛物线②是否中心对称?若是,求出对称中心的坐标;若不是,说明理由;
(2)直线y=m交抛物线①于A、B两点,交抛物线②于C、D两点,如果AB=2CD,求m的值;
(3)设抛物线①与抛物线②的顶点分别为M、N,点P在x轴上移动,若△MNP为直角三角形,求点P坐标. 查看习题详情和答案>>
m1+m2 |
2 |
n1+n2 |
2 |
(1)判断抛物线①与抛物线②是否中心对称?若是,求出对称中心的坐标;若不是,说明理由;
(2)直线y=m交抛物线①于A、B两点,交抛物线②于C、D两点,如果AB=2CD,求m的值;
(3)设抛物线①与抛物线②的顶点分别为M、N,点P在x轴上移动,若△MNP为直角三角形,求点P坐标. 查看习题详情和答案>>
已知抛物线y=ax2-2ax+c-1的顶点在直线y=-
x+8上,与x轴相交于B(α,0)、C(β,0)两点,其中α<β,且α2+β2=10.
(1)求这个抛物线的解析式;
(2)设这个抛物线与y轴的交点为P,H是线段BC上的一个动点,过H作HK∥PB,交PC于K,连接PH,记线段BH的长为t,△PHK的面积为S,试将S表示成t的函数;
(3)求S的最大值,以及S取最大值时过H、K两点的直线的解析式. 查看习题详情和答案>>
8 | 3 |
(1)求这个抛物线的解析式;
(2)设这个抛物线与y轴的交点为P,H是线段BC上的一个动点,过H作HK∥PB,交PC于K,连接PH,记线段BH的长为t,△PHK的面积为S,试将S表示成t的函数;
(3)求S的最大值,以及S取最大值时过H、K两点的直线的解析式. 查看习题详情和答案>>