摘要:即要求AM介于5cm与9cm之间.记“以线段AM为边长的正方形面积介于25cm2与81cm2之间 为事件A.则由几何概型的求概率的公式得P(A)== ---- 14分
网址:http://m.1010jiajiao.com/timu_id_72338[举报]
如果有穷数列a1,a2,a3,…,am(m为正整数)满足a1=am,a2=am-1,…,am=a1.即ai=am-i+1(i=1,2,…,m),我们称其为“对称数列“例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.设{bn}是项数为2m(m>1,m∈N*)的“对称数列”,并使得1,2,22,23,…,2m-1依次为该数列中连续的前m项,则数列{bn}的前2010项和S2010可以是
(1)22010-1 (2)21006-2 (3)2m+1-22m-2010-1
其中正确命题的个数为( )
(1)22010-1 (2)21006-2 (3)2m+1-22m-2010-1
其中正确命题的个数为( )
A、0 | B、1 | C、2 | D、3 |
如果有穷数列a1,a2,a3,…,am(m=2k,k∈N*)满足条件a1=-am,a2=-am-1,…,am=-a1即ai=-am-i+1(i=1,2,…,m),我们称其为“反对称数列”.
(1)请在下列横线上填入适当的数,使这6个数构成“反对称数列”:-8,
(2)设{cn}是项数为30的“反对称数列”,其中c16,c17,c18,…,c30构成首项为-1,公比为2的等比数列.设Tn是数列{ncn}的前n项和,则T15=
查看习题详情和答案>>
(1)请在下列横线上填入适当的数,使这6个数构成“反对称数列”:-8,
-4
-4
,-2,2
2
,4,8
8
;(2)设{cn}是项数为30的“反对称数列”,其中c16,c17,c18,…,c30构成首项为-1,公比为2的等比数列.设Tn是数列{ncn}的前n项和,则T15=
216-17
216-17
.拓展探究题
(1)已知两个圆:①x2+y2=1;②x2+(y-3)2=1,则由①式减去②式可得两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例.推广的命题为
(2)平面几何中有正确命题:“正三角形内任意一点到三边的距离之和等于定值,大小为边长的
倍”,请你写出此命题在立体几何中类似的真命题:
查看习题详情和答案>>
(1)已知两个圆:①x2+y2=1;②x2+(y-3)2=1,则由①式减去②式可得两圆的对称轴方程.将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例.推广的命题为
已知两个圆:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,则由①式减去②式可得两圆的对称轴方程
已知两个圆:①(x-a)2+(y-b)2=r2;②(x-c)2+(y-d)2=r2,则由①式减去②式可得两圆的对称轴方程
.(2)平面几何中有正确命题:“正三角形内任意一点到三边的距离之和等于定值,大小为边长的
| ||
2 |
正四面体内任意一点到四个面的距离之和是一个定值,大小为棱长的
倍
| ||
3 |
正四面体内任意一点到四个面的距离之和是一个定值,大小为棱长的
倍
.
| ||
3 |