摘要:6.梯形总可以看成是一个平行四边形与一个三角形的组合.这也是我们解决有关梯形的问题时经常使用的方法.如图.梯形ABCD中.AD∥BC.DE∥AB.∠B=70°.∠C=40°.试说明:
网址:http://m.1010jiajiao.com/timu_id_686580[举报]
中国,是拥有五千年历史的古国,它具有十分丰富的文化传承,其中京剧就是一门重要的艺术,常常受到外国友人的青睐.看到下面的京剧脸谱了吗?其实它们可以看成是一个半圆与抛物线的一部分组合成的封闭图形,如果一条直线与此图形只有一个交点,那么这条直线叫做它的切线.
如图,点A、B、C、D分别是该图形与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出此图形抛物线部分的解析式,并写出自变量的取值范围;
(2)x轴上有点E(-3,0),直线CE是此图形的切线吗?请说明理由.
查看习题详情和答案>>
如图,点A、B、C、D分别是该图形与坐标轴的交点,已知点D的坐标为(0,-3),AB为半圆的直径,半圆圆心M的坐标为(1,0),半圆半径为2.
(1)请你求出此图形抛物线部分的解析式,并写出自变量的取值范围;
(2)x轴上有点E(-3,0),直线CE是此图形的切线吗?请说明理由.
查看习题详情和答案>>
“构造法”是一种重要方法,它没有固定的模式.要想用好它,需要有敏锐的观察、丰富的想象、灵活的构思.应用构造法解题的关键有二:一是要有明确的方向,即为什么目的而构造;二是要弄清条件的本质特点,以便重新进行组合.
例:在△ABC中,AB、BC、AC三边长分别是
、
、
,求这个三角形的面积.
小辉在解这道题时,画一个正方形网格(每个正方形的边长为1),再在网格中画出格点(即的顶点都在小正方形的顶点处),如图1所示,这样不需要求的高,借助网格就能计算出它的面积.图中的面积,可以看成是一个的正方形的面积减去三个小三角形的面积:S△ABC=3×3-
×3×1-
×2×1-
×3×2=
思维拓展:已知△ABC的边长分别为
、2
、
(a>0),请在下图所示的正方形网格中(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.
查看习题详情和答案>>
例:在△ABC中,AB、BC、AC三边长分别是
5 |
10 |
13 |
小辉在解这道题时,画一个正方形网格(每个正方形的边长为1),再在网格中画出格点(即的顶点都在小正方形的顶点处),如图1所示,这样不需要求的高,借助网格就能计算出它的面积.图中的面积,可以看成是一个的正方形的面积减去三个小三角形的面积:S△ABC=3×3-
1 |
2 |
1 |
2 |
1 |
2 |
7 |
2 |
思维拓展:已知△ABC的边长分别为
5a |
2a |
17a |
“构造法”是一种重要方法,它没有固定的模式.要想用好它,需要有敏锐的观察、丰富的想象、灵活的构思.应用构造法解题的关键有二:一是要有明确的方向,即为什么目的而构造;二是要弄清条件的本质特点,以便重新进行组合.
例:在△ABC中,AB、BC、AC三边长分别是,求这个三角形的面积.
小辉在解这道题时,画一个正方形网格(每个正方形的边长为1),再在网格中画出格点(即的顶点都在小正方形的顶点处),如图1所示,这样不需要求的高,借助网格就能计算出它的面积.图中的面积,可以看成是一个的正方形的面积减去三个小三角形的面积:
思维拓展:已知△ABC的边长分别为,请在下图所示的正方形网格中(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.
查看习题详情和答案>>
例:在△ABC中,AB、BC、AC三边长分别是,求这个三角形的面积.
小辉在解这道题时,画一个正方形网格(每个正方形的边长为1),再在网格中画出格点(即的顶点都在小正方形的顶点处),如图1所示,这样不需要求的高,借助网格就能计算出它的面积.图中的面积,可以看成是一个的正方形的面积减去三个小三角形的面积:
思维拓展:已知△ABC的边长分别为,请在下图所示的正方形网格中(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.
查看习题详情和答案>>
“构造法”是一种重要方法,它没有固定的模式.要想用好它,需要有敏锐的观察、丰富的想象、灵活的构思.应用构造法解题的关键有二:一是要有明确的方向,即为什么目的而构造;二是要弄清条件的本质特点,以便重新进行组合.
例:在△ABC中,AB、BC、AC三边长分别是,求这个三角形的面积.小辉在解这道题时,画一个正方形网格(每个正方形的边长为1),再在网格中画出格点(即三角形的顶点都在小正方形的顶点处),
如图1所示,这样不需要求的高,借助网格就能计算出它的面积.图中的面积,可以看成是一个的正方形的面积减去三个小三角形的面积:
思维拓展:已知△ABC的边长分别为,请在下图所示的正方形网格中(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.
例:在△ABC中,AB、BC、AC三边长分别是,求这个三角形的面积.小辉在解这道题时,画一个正方形网格(每个正方形的边长为1),再在网格中画出格点(即三角形的顶点都在小正方形的顶点处),
如图1所示,这样不需要求的高,借助网格就能计算出它的面积.图中的面积,可以看成是一个的正方形的面积减去三个小三角形的面积:
思维拓展:已知△ABC的边长分别为,请在下图所示的正方形网格中(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.