摘要:(3)如果取的中点.以为边在内部作如图2所示的矩形.点在线段上.设等边和矩形重叠部分的面积为.请求出当秒时与的函数关系式.并求出的最大值.
网址:http://m.1010jiajiao.com/timu_id_686092[举报]
如图,在直角坐标系中,O为坐标原点,矩形ABCD的边AD与x轴的正半轴重合,另三边都在第四象限内,已知点A(1,0),AB=2,AD=3,点E为OD的中点,以AD为直径作⊙M,经过A、D两点的抛物线y=ax2+bx+c的
顶点为P.
(1)求经过C、E两点的直线的解析式;
(2)如果点P同时在⊙M和矩形ABCD内部,求a的取值范围;
(3)过点B作⊙M的切线交边CD于F点,当PF∥AD时,判断直线CE与y轴的交点是否在抛物线上,并说明理由. 查看习题详情和答案>>
(1)求经过C、E两点的直线的解析式;
(2)如果点P同时在⊙M和矩形ABCD内部,求a的取值范围;
(3)过点B作⊙M的切线交边CD于F点,当PF∥AD时,判断直线CE与y轴的交点是否在抛物线上,并说明理由. 查看习题详情和答案>>
如图,在直角坐标系中,O为坐标原点,矩形ABCD的边AD与x轴的正半轴重合,另三边都在第四象限内,已知点A(1,0),AB=2,AD=3,点E为OD的中点,以AD为直径作⊙M,经过A、D两点的抛物线y=ax2+bx+c的
顶点为P.
(1)求经过C、E两点的直线的解析式;
(2)如果点P同时在⊙M和矩形ABCD内部,求a的取值范围;
(3)过点B作⊙M的切线交边CD于F点,当PF∥AD时,判断直线CE与y轴的交点是否在抛物线上,并说明理由.
查看习题详情和答案>>
如图,在直角坐标系中,O为坐标原点,矩形ABCD的边AD与x轴的正半轴重合,另三边都在第四象限内,已知点A(1,0),AB=2,AD=3,点E为OD的中点,以AD为直径作⊙M,经过A、D两点的抛物线y=ax2+bx+c的顶点为P.
(1)求经过C、E两点的直线的解析式;
(2)如果点P同时在⊙M和矩形ABCD内部,求a的取值范围;
(3)过点B作⊙M的切线交边CD于F点,当PF∥AD时,判断直线CE与y轴的交点是否在抛物线上,并说明理由.
查看习题详情和答案>>
(1)求经过C、E两点的直线的解析式;
(2)如果点P同时在⊙M和矩形ABCD内部,求a的取值范围;
(3)过点B作⊙M的切线交边CD于F点,当PF∥AD时,判断直线CE与y轴的交点是否在抛物线上,并说明理由.
如图,在一个等边三角形EFG的内部做一个矩形ABCD,其中等边三角形的边长为40 cm,点C和点D分别在边EF、EG上.
(1)如果设矩形的一边AB=x cm,那么AD的长度如何表示?
(2)设矩形的面积为y cm,当x取何值时,y的值最大,最大值是多少?
(提示:过点E作EM⊥GF,交CD于点N)
(1)EM的长为________cm.
(2)由DC∥GF,得△________∽△________.
所以DC∶GF=EN∶EM.
(3)设矩形的一边AB=x cm,则x∶40=(EM-AD)∶EM,解得AD=________.
(4)y与x之间的表达式是________.
(5)因为a________0,所以y有最________值.当x=________时,矩形的面积有最大值,最大值是________.
析一析:(1)先求出EM的长;
(2)由DC∥GF可以得出两个三角形相似;
(3)利用相似三角形的性质,求出AD的长;
(4)由矩形的面积=AD·AB,可以求出y与x之间的关系式;
(5)利用y与x之间的关系式可以解答第(2)问吗?试完成下面的解答过程.