题目内容

如图,在一个等边三角形EFG的内部做一个矩形ABCD,其中等边三角形的边长为40 cm,点C和点D分别在边EF、EG上.

(1)如果设矩形的一边AB=x cm,那么AD的长度如何表示?

(2)设矩形的面积为y cm,当x取何值时,y的值最大,最大值是多少?

(提示:过点E作EM⊥GF,交CD于点N)

(1)EM的长为________cm.

(2)由DC∥GF,得△________∽△________.

所以DC∶GF=EN∶EM.

(3)设矩形的一边AB=x cm,则x∶40=(EM-AD)∶EM,解得AD=________.

(4)y与x之间的表达式是________.

(5)因为a________0,所以y有最________值.当x=________时,矩形的面积有最大值,最大值是________.

析一析:(1)先求出EM的长;

(2)由DC∥GF可以得出两个三角形相似;

(3)利用相似三角形的性质,求出AD的长;

(4)由矩形的面积=AD·AB,可以求出y与x之间的关系式;

(5)利用y与x之间的关系式可以解答第(2)问吗?试完成下面的解答过程.

答案:
解析:

  (1)20

  (2)DEC,GEF;

  (3)

  (4)y=

  (5)<,大,20,200


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网