摘要:4.若⊙O所在的平面内上有一点P.它到⊙O上的点的最大距离是6.最小距离是2.则这个圆的半径为 A.2 B.4 C.2或4 D.不能确定
网址:http://m.1010jiajiao.com/timu_id_682912[举报]
先阅读短文,再解答短文后面的问题.
规定了方向的线段称为有向线段.比如,对于线段AB,规定以A为起点,B为终点,便可得到一条从A到B的有向线段.为强调其方向,我们在其终点B处画上箭头(如下图-1).以A为起点,B为终点的有向线段记为
(起点字母A写在前面,终点字母B写在后面).线段AB的长度叫做有向线AB的长度(或模),记为|
|.显然,有向线段
和有向线段
长度相同.方向不同,它们不是同一条有向线段.
对于同一平面内的有向线段,我们可以在该平面建立直角坐标系进行研究(一般情况,直角坐标系的单位长度与有向线段的单位长度相同).比如,以坐标原点O(0,0)为起点,P(3,0)为终点的有向线段
,其方向与x轴正方向相同,长度(或模)是|
|=3.
问题:
(1)在如图所示的平面直角坐标系中画出
有向线段,使得
=3
,
与x轴正半轴的夹角是45°,且与y轴的负半轴的夹角是45°;
(2)若有向线段
的终点B的坐标为(3,
),试求出它的模及它与x轴正半轴的夹角;
(3)若点M、A、P在同一直线上,|
|+|
|=|
|成立吗?试画出示意图加以说明.(示意图可以不画在平面直角坐标系中)
查看习题详情和答案>>
规定了方向的线段称为有向线段.比如,对于线段AB,规定以A为起点,B为终点,便可得到一条从A到B的有向线段.为强调其方向,我们在其终点B处画上箭头(如下图-1).以A为起点,B为终点的有向线段记为
AB |
AB |
AB |
BA |
对于同一平面内的有向线段,我们可以在该平面建立直角坐标系进行研究(一般情况,直角坐标系的单位长度与有向线段的单位长度相同).比如,以坐标原点O(0,0)为起点,P(3,0)为终点的有向线段
OP |
OP |
问题:
(1)在如图所示的平面直角坐标系中画出
OA |
OA |
2 |
OA |
(2)若有向线段
OB |
3 |
(3)若点M、A、P在同一直线上,|
MA |
AP |
MP |
查看习题详情和答案>>
(2010•内江)阅读理解:
我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点P(x1,y1)、Q(x2,y2)的对称中心的坐标为.
观察应用:
(1)如图,在平面直角坐标系中,若点P1(0,-1)、P2(2,3)的对称中心是点A,则点A的坐标为______;
(2)另取两点B(-1.6,2.1)、C(-1,0).有一电子青蛙从点P1处开始依次关于点A、B、C作循环对称跳动,即第一次跳到点P1关于点A的对称点P2处,接着跳到点P2关于点B的对称点P3处,第三次再跳到点P3关于点C的对称点P4处,第四次再跳到点P4关于点A的对称点P5处,…则点P3、P8的坐标分别为______、______.
拓展延伸:
(3)求出点P2012的坐标,并直接写出在x轴上与点P2012、点C构成等腰三角形的点的坐标.
查看习题详情和答案>>
我们知道,任意两点关于它们所连线段的中点成中心对称,在平面直角坐标系中,任意两点P(x1,y1)、Q(x2,y2)的对称中心的坐标为.
观察应用:
(1)如图,在平面直角坐标系中,若点P1(0,-1)、P2(2,3)的对称中心是点A,则点A的坐标为______;
(2)另取两点B(-1.6,2.1)、C(-1,0).有一电子青蛙从点P1处开始依次关于点A、B、C作循环对称跳动,即第一次跳到点P1关于点A的对称点P2处,接着跳到点P2关于点B的对称点P3处,第三次再跳到点P3关于点C的对称点P4处,第四次再跳到点P4关于点A的对称点P5处,…则点P3、P8的坐标分别为______、______.
拓展延伸:
(3)求出点P2012的坐标,并直接写出在x轴上与点P2012、点C构成等腰三角形的点的坐标.
查看习题详情和答案>>