摘要:7.老师出示了小黑板上的题后.小华说:过点,小彬说:过点,小明说:,小颖说:抛物线被轴截得的线段长为2.你认为四人的说法中.正确的有
网址:http://m.1010jiajiao.com/timu_id_677665[举报]
同学们,折纸中也有很大的学问呢.张老师出示了以下三个问题,小聪、小明、小慧分别在黑板上进行了板演,请你也解答这个问题:
在一张长方形ABCD纸片中,AB=25cm,AD=20cm,现将这张纸片按下列图示方法折叠,请解决下列问题.
(1)如图1,折痕为DE,点A的对应点F在CD上,则折痕DE的长为 ;
(2)如图2,H,G分别为BC,AD的中点,A的对应点F在HG上,折痕为DE,求重叠部分的面积;
(3)如图3,在图2中,把长方形ABCD沿着HG对开,变成两张长方形纸片,将两张纸片任意叠合后,发现重叠部分是一个菱形,显然,这个菱形的周长最短是40cm,求叠合后周长最大的菱形的周长和面积.
查看习题详情和答案>>
在一张长方形ABCD纸片中,AB=25cm,AD=20cm,现将这张纸片按下列图示方法折叠,请解决下列问题.
(1)如图1,折痕为DE,点A的对应点F在CD上,则折痕DE的长为
(2)如图2,H,G分别为BC,AD的中点,A的对应点F在HG上,折痕为DE,求重叠部分的面积;
(3)如图3,在图2中,把长方形ABCD沿着HG对开,变成两张长方形纸片,将两张纸片任意叠合后,发现重叠部分是一个菱形,显然,这个菱形的周长最短是40cm,求叠合后周长最大的菱形的周长和面积.
查看习题详情和答案>>
同学们,折纸中也有很大的学问呢.张老师出示了以下三个问题,小聪、小明、小慧分别在黑板上进行了板演,请你也解答这个问题:
在一张长方形ABCD纸片中,AB=25cm,AD=20cm,现将这张纸片按下列图示方法折叠,请解决下列问题.
(1)如图1,折痕为DE,点A的对应点F在CD上,则折痕DE的长为______;
(2)如图2,H,G分别为BC,AD的中点,A的对应点F在HG上,折痕为DE,求重叠部分的面积;
(3)如图3,在图2中,把长方形ABCD沿着HG对开,变成两张长方形纸片,将两张纸片任意叠合后,发现重叠部分是一个菱形,显然,这个菱形的周长最短是40cm,求叠合后周长最大的菱形的周长和面积.
查看习题详情和答案>>
9、妙趣角:辅助线
问题探讨实录片段:
老师:等腰三角形的两个底角一定相等吗?
同学们异口同声:一定相等!
老师:谁能说说理由?[说着,在图(1)上用符号分别表示了已知“等腰”的条件和“底角为何相等”的疑问.]
小明:如图(2),如果作顶角平分线AD,那么可以根据“SAS”知道△ABD≌△ACD,得到∠B=∠C.
小华:如图(3),如果作底边上的中线,那么可以根据“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
小芳:如图(4),如果作底边上的高,那么可以根据“HL”,知道△ABD≌△ACD,得到∠B=∠C.
老师:非常好!小明、小华和小芳所作的线段虽然名目各异,但是作用相同──都是通过构造一对全等三角形来说明∠B=∠C,所画的这条线段AD,可以称它为“辅助线”.
小强:“辅助线”,可谓名副其实.
老师:上面大家探讨得到:一个三角形中,如果知道两边相等,那么可得这两边的对角也相等,这可简述为“等边对等角”.
小霞:我想也应该有“等角对等边”[说着,画出了图(5),其中,AB、AC两边上的“”无疑也是在征求说理.]
不一会,争先恐后的几位同学在黑板上画出了如下带有“辅助线”的图形[图(6)、(7)、(8)]:
老师期待的目光显然是在说:请你通过观察与思考,对上述3个图形作一评价…
查看习题详情和答案>>
问题探讨实录片段:
老师:等腰三角形的两个底角一定相等吗?
同学们异口同声:一定相等!
老师:谁能说说理由?[说着,在图(1)上用符号分别表示了已知“等腰”的条件和“底角为何相等”的疑问.]
小明:如图(2),如果作顶角平分线AD,那么可以根据“SAS”知道△ABD≌△ACD,得到∠B=∠C.
小华:如图(3),如果作底边上的中线,那么可以根据“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
小芳:如图(4),如果作底边上的高,那么可以根据“HL”,知道△ABD≌△ACD,得到∠B=∠C.
老师:非常好!小明、小华和小芳所作的线段虽然名目各异,但是作用相同──都是通过构造一对全等三角形来说明∠B=∠C,所画的这条线段AD,可以称它为“辅助线”.
小强:“辅助线”,可谓名副其实.
老师:上面大家探讨得到:一个三角形中,如果知道两边相等,那么可得这两边的对角也相等,这可简述为“等边对等角”.
小霞:我想也应该有“等角对等边”[说着,画出了图(5),其中,AB、AC两边上的“”无疑也是在征求说理.]
不一会,争先恐后的几位同学在黑板上画出了如下带有“辅助线”的图形[图(6)、(7)、(8)]:
老师期待的目光显然是在说:请你通过观察与思考,对上述3个图形作一评价…
妙趣角:辅助线
问题探讨实录片段:
老师:等腰三角形的两个底角一定相等吗?
同学们异口同声:一定相等!
老师:谁能说说理由?[说着,在图(1)上用符号分别表示了已知“等腰”的条件和“底角为何相等”的疑问.]
小明:如图(2),如果作顶角平分线AD,那么可以根据“SAS”知道△ABD≌△ACD,得到∠B=∠C.
小华:如图(3),如果作底边上的中线,那么可以根据“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
小芳:如图(4),如果作底边上的高,那么可以根据“HL”,知道△ABD≌△ACD,得到∠B=∠C.
老师:非常好!小明、小华和小芳所作的线段虽然名目各异,但是作用相同──都是通过构造一对全等三角形来说明∠B=∠C,所画的这条线段AD,可以称它为“辅助线”.
小强:“辅助线”,可谓名副其实.
老师:上面大家探讨得到:一个三角形中,如果知道两边相等,那么可得这两边的对角也相等,这可简述为“等边对等角”.
小霞:我想也应该有“等角对等边”[说着,画出了图(5),其中,AB、AC两边上的“”无疑也是在征求说理.]
不一会,争先恐后的几位同学在黑板上画出了如下带有“辅助线”的图形[图(6)、(7)、(8)]:
老师期待的目光显然是在说:请你通过观察与思考,对上述3个图形作一评价…
查看习题详情和答案>>
妙趣角:辅助线
问题探讨实录片段:
老师:等腰三角形的两个底角一定相等吗?
同学们异口同声:一定相等!
老师:谁能说说理由?[说着,在图(1)上用符号分别表示了已知“等腰”的条件和“底角为何相等”的疑问.]
小明:如图(2),如果作顶角平分线AD,那么可以根据“SAS”知道△ABD≌△ACD,得到∠B=∠C.
小华:如图(3),如果作底边上的中线,那么可以根据“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
小芳:如图(4),如果作底边上的高,那么可以根据“HL”,知道△ABD≌△ACD,得到∠B=∠C.
老师:非常好!小明、小华和小芳所作的线段虽然名目各异,但是作用相同──都是通过构造一对全等三角形来说明∠B=∠C,所画的这条线段AD,可以称它为“辅助线”.
小强:“辅助线”,可谓名副其实.
老师:上面大家探讨得到:一个三角形中,如果知道两边相等,那么可得这两边的对角也相等,这可简述为“等边对等角”.
小霞:我想也应该有“等角对等边”[说着,画出了图(5),其中,AB、AC两边上的“”无疑也是在征求说理.]
不一会,争先恐后的几位同学在黑板上画出了如下带有“辅助线”的图形[图(6)、(7)、(8)]:
老师期待的目光显然是在说:请你通过观察与思考,对上述3个图形作一评价…
查看习题详情和答案>>
问题探讨实录片段:
老师:等腰三角形的两个底角一定相等吗?
同学们异口同声:一定相等!
老师:谁能说说理由?[说着,在图(1)上用符号分别表示了已知“等腰”的条件和“底角为何相等”的疑问.]
小明:如图(2),如果作顶角平分线AD,那么可以根据“SAS”知道△ABD≌△ACD,得到∠B=∠C.
小华:如图(3),如果作底边上的中线,那么可以根据“SSS”,知道△ABD≌△ACD,得到∠B=∠C.
小芳:如图(4),如果作底边上的高,那么可以根据“HL”,知道△ABD≌△ACD,得到∠B=∠C.
老师:非常好!小明、小华和小芳所作的线段虽然名目各异,但是作用相同──都是通过构造一对全等三角形来说明∠B=∠C,所画的这条线段AD,可以称它为“辅助线”.
小强:“辅助线”,可谓名副其实.
老师:上面大家探讨得到:一个三角形中,如果知道两边相等,那么可得这两边的对角也相等,这可简述为“等边对等角”.
小霞:我想也应该有“等角对等边”[说着,画出了图(5),其中,AB、AC两边上的“”无疑也是在征求说理.]
不一会,争先恐后的几位同学在黑板上画出了如下带有“辅助线”的图形[图(6)、(7)、(8)]:
老师期待的目光显然是在说:请你通过观察与思考,对上述3个图形作一评价…