摘要:(3)如图.在中..能否根据这个图形提炼出与(1)中同样的关系式?并给予证明.
网址:http://m.1010jiajiao.com/timu_id_676168[举报]
如图,一个隧道的横截面成抛物线形,它的底部宽12米、高6米.车辆在此隧道可以双向通行,但规定车辆必须在隧道的中心线右侧、距离路边缘2米这一范围内行驶,并保持车辆顶部与隧道的空隙不少于
米.
(1)画出以抛物线的顶点为原点的直角坐标系;
(2)在第(1)小题的基础上,求该隧道横截面的抛物线的函数关系式,并指出自变量x的取值范围;
(3)你能否根据题中的要求,应用已有的二次函数知识,确定通过隧道车辆的高度不能超过多少米?
查看习题详情和答案>>
(1)画出以抛物线的顶点为原点的直角坐标系;
(2)在第(1)小题的基础上,求该隧道横截面的抛物线的函数关系式,并指出自变量x的取值范围;
(3)你能否根据题中的要求,应用已有的二次函数知识,确定通过隧道车辆的高度不能超过多少米?
如图,一个隧道的横截面成抛物线形,它的底部宽12米、高6米.车辆在此隧道可以双向通行,但规定车辆必须在隧道的中心线右侧、距离路边缘2米这一范围内行驶,并保持车辆顶部与隧道的空隙不少于
米.
(1)画出以抛物线的顶点为原点的直角坐标系;
(2)在第(1)小题的基础上,求该隧道横截面的抛物线的函数关系式,并指出自变量x的取值范围;
(3)你能否根据题中的要求,应用已有的二次函数知识,确定通过隧道车辆的高度不能超过多少米?
查看习题详情和答案>>
24、(1)如图,在图1中,互不重叠的三角形共有3个,在图2中,互不重叠的三角形共有5个,在图3中,互不重叠的三角形共有7个,…,则在第n个图形中,互不重叠的三角形共有

(2)若在如图4所示的n边形中,P是A1An边上的点,分别连接PA2、PA3、PA4…PAn-1,得到n-1个互不重叠的三角形.

你能否根据这样的划分方法写出n边形的内角和公式并说明你的理由;
(3)反之,若在四边形内部有n个不同的点,按照(1)中的方法可得k个互不重叠的三角形,试探究n与k的关系.

查看习题详情和答案>>
2n+1
个.(用含n的代数式表示)(2)若在如图4所示的n边形中,P是A1An边上的点,分别连接PA2、PA3、PA4…PAn-1,得到n-1个互不重叠的三角形.
你能否根据这样的划分方法写出n边形的内角和公式并说明你的理由;
(3)反之,若在四边形内部有n个不同的点,按照(1)中的方法可得k个互不重叠的三角形,试探究n与k的关系.
在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.
比如撏?资?莸某朔ǚㄔ驍的学习过程是利用有理数的乘方概念和乘法结合律,由撎厥鈹到撘话銛进行抽象概括的:
,
,
,![]()
,
![]()
![]()
我们亦知:
,
,
,
,
.
(1
)请你根据上面的材料归纳出(2
)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:撊-(3
)如图,在![]()
在数学学习过程中,通常是利用已有的知识与经验,通过对研究对象进行观察、实验、推理、抽象概括,发现数学规律,揭示研究对象的本质特征.
比如“同底数幂的乘法法则”的学习过程是利用有理数的乘方概念和乘法结合律,由“特殊”到“一般”进行抽象概括的:22×23=25,23×24=27,22×26=28,…
2m×2n=2m+n,…
am×an=am+n(m,n都是正整数).
我们亦知:
,
,
,
,….
(1)请你根据上面的材料归纳出a,b,c(a>b>0,c>0)之间的一个数学关系式;
(2)试用(1)中你归纳的数学关系式,解释下面生活中的一个现象:“若m克糖水里含有n克糖,再加入k克糖(仍不饱和),则糖水更甜了”;
(3)如图,在Rt△ABC中,∠C=90°,CB=a,CA=b,AD=BE=c(a>b).能否根据这个图形提炼出与(1)中同样的关系式?并给予证明.