网址:http://m.1010jiajiao.com/timu_id_675246[举报]
提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?
探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
(1)当AP=
AD时(如图②):
∵AP=
AD,△ABP和△ABD的高相等,
∴S△ABP=
S△ABD .
∵PD=AD-AP=
AD,△CDP和△CDA的高相等,
∴S△CDP=
S△CDA .
∴S△PBC =S四边形ABCD-S△ABP-S△CDP
=S四边形ABCD-
S△ABD-
S△CDA
=S四边形ABCD-
(S四边形ABCD-S△DBC)-
(S四边形ABCD-S△ABC)
=
S△DBC+
S△ABC .
(2)当AP=
AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
(3)当AP=
AD时,S△PBC与S△ABC和S△DBC之间的关系式为:________________;
(4)一般地,当AP=
AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
问题解决:当AP=
AD(0≤
≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为:___________.
提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?
探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
(1
)当AP=![]()
∵AP=
AD,△ABP和△ABD的高相等,
∴S△ABP=
S△ABD .
∵PD=AD-AP=
AD,△CDP和△CDA的高相等,
∴S△CDP=
S△CDA .
∴S△PBC =S四边形ABCD-S△ABP-S△CDP
=S四边形ABCD-
S△ABD-
S△CDA
=S四边形ABCD-
(S四边形ABCD-S△DBC)-
(S四边形ABCD-S△ABC)
=
S△DBC+
S△ABC .
(2
)当AP=(3
)当AP=(4
)一般地,当AP=问题解决:当AP=
AD(0≤
≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为:___________.
提出问题:如图,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?
探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
(1)当AP=
AD时(如图):
∵AP=
AD,△ABP和△ABD的高相等,
∴S△ABP=
S△ABD.
∵PD=AD-AP=
AD,△CDP和△CDA的高相等,
∴S△CDP=
S△CDA.
∴S△PBC=S四边形ABCD-S△ABP-S△CDP
=S四边形ABCD-
S△ABD-
S△CDA
=S四边形ABCD-
(S四边形ABCD-S△DBC)-
(S四边形ABCD-S△ABC)
=
S△DBC+
S△ABC.
(2)当
时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
(3)当
时,S△PBC与S△ABC和S△DBC之间的关系式为:________;
(4)一般地,当
(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
问题解决:当
时,S△PBC与S△ABC和S△DBC之间的关系式为:________.
提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?
探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
(1)当AP=
AD时(如图②):
∵AP=
AD,△ABP和△ABD的高相等,
∴S△ABP=
S△ABD.
∵PD=AD-AP=
AD,△CDP和△CDA的高相等,
∴S△CDP=
S△CDA.
∴S△PBC=S四边形ABCD-S△ABP-S△CDP
=S四边形ABCD-
S△ABD-
S△CDA
=S四边形ABCD-
(S四边形ABCD-S△DBC)-
(S四边形ABCD-S△ABC)
=
S△DBC+
S△ABC.
(2)当AP=
AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
(3)当AP=
AD时,S△PBC与S△ABC和S△DBC之间的关系式为:________;
(4)一般地,当AP=
AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
问题解决:当AP=
AD(0≤
≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为:________.
旧知新意:
我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?
1.尝试探究:
(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?
2.初步应用:
(2) 如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=130°,
则∠2-∠C=_______________;
(3) 小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案_ _.
3.拓展提升:
(4) 如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由.)