题目内容
提出问题:如图①,在四边形ABCD中,P是AD边上任意一点,△PBC与△ABC和△DBC的面积之间有什么关系?
探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:
(1)当AP=AD时(如图②):
∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD .
∵PD=AD-AP=AD,△CDP和△CDA的高相等,
∴S△CDP=S△CDA .
∴S△PBC =S四边形ABCD-S△ABP-S△CDP
=S四边形ABCD-S△ABD-S△CDA
=S四边形ABCD-(S四边形ABCD-S△DBC)-(S四边形ABCD-S△ABC)
=S△DBC+S△ABC .
(2)当AP=AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
(3)当AP=AD时,S△PBC与S△ABC和S△DBC之间的关系式为:________________;
(4)一般地,当AP=AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
问题解决:当AP=AD(0≤≤1)时,S△PBC与S△ABC和S△DBC之间的关系式为:___________.
解:⑵ ∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD .
又∵PD=AD-AP=AD,△CDP和△CDA的高相等,
∴S△CDP=S△CDA .
∴S△PBC =S四边形ABCD-S△ABP-S△CDP
=S四边形ABCD-S△ABD-S△CDA
=S四边形ABCD-(S四边形ABCD-S△DBC)-(S四边形ABCD-S△ABC)
=S△DBC+S△ABC .
∴S△PBC=S△DBC+S△ABC .
⑶ S△PBC=S△DBC+S△ABC ;
⑷ S△PBC=S△DBC+S△ABC ;
∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=S△ABD .
又∵PD=AD-AP=AD,△CDP和△CDA的高相等,
∴S△CDP=S△CDA .
∴S△PBC =S四边形ABCD-S△ABP-S△CDP
=S四边形ABCD-S△ABD-S△CDA
=S四边形ABCD-(S四边形ABCD-S△DBC)-(S四边形ABCD-S△ABC)
=S△DBC+S△ABC .
∴S△PBC=S△DBC+S△ABC .
问题解决: S△PBC=S△DBC+S△ABC .
∵AP=AD,△ABP和△ABD的高相等,
∴S△ABP=
∵PD=AD-AP=,
△CDP和△CDA的高相等,
∴S△CDP=,
∴S△PBC=
;
(2)当AP=AD时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
(3)当AP=AD时,S△PBC与S△ABC和S△DBC之间的关系式为:______;
(4)一般地,当AP=AD(n表示正整数)时,探求S△PBC与S△ABC和S△DBC之间的关系,写出求解过程;
问题解决:当AP=时,S△PBC与S△ABC和S△DBC之间的关系式为:________。