摘要:及?可取--- 7分
网址:http://m.1010jiajiao.com/timu_id_64964[举报]
本题共有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则以所做的前2题计分.
(1)选修4-2:矩阵与变换
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=
,并且矩阵M对应的变换将点(-1,2)变换成(9,15).求矩阵M.
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,已知曲线C的参数方程是
(α是参数).
现以原点O为极点,x轴的正半轴为极轴,建立极坐标系,写出曲线C的极坐标方程.
(3)选修4-5:不等式选讲
解不等式|2x+1|-|x-4|>2. 查看习题详情和答案>>
(1)选修4-2:矩阵与变换
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=
|
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,已知曲线C的参数方程是
|
现以原点O为极点,x轴的正半轴为极轴,建立极坐标系,写出曲线C的极坐标方程.
(3)选修4-5:不等式选讲
解不等式|2x+1|-|x-4|>2. 查看习题详情和答案>>
一个袋子中有形状和大小完全相同的3只白球与2只黑球,若取至一个白球得2分,取到一个黑球得3分,
(I)若无放回地依次抽取3个小球,求得分不少于7分的概率.
(II)若从袋子中有放回地依次取出3只球,求总得分ξ的概率分布列及期望Eξ.
查看习题详情和答案>>
(I)若无放回地依次抽取3个小球,求得分不少于7分的概率.
(II)若从袋子中有放回地依次取出3只球,求总得分ξ的概率分布列及期望Eξ.
本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中.
(1)选修4一2:矩阵与变换
求矩阵A=
的特征值及对应的特征向量.
(2)选修4一4:坐标系与参数方程
已知直线l的参数方程:
(t为参数)和圆C的极坐标方程:ρ=2
sin(θ+
).
(Ⅰ)将直线l的参数方程化为普通方程,圆C的极坐标方程化为直角坐标方程;
(Ⅱ)判断直线l和圆C的位置关系.
(3)选修4一5:不等式选讲
已知函数f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求实数x的范围.
查看习题详情和答案>>
(1)选修4一2:矩阵与变换
求矩阵A=
|
(2)选修4一4:坐标系与参数方程
已知直线l的参数方程:
|
2 |
π |
4 |
(Ⅰ)将直线l的参数方程化为普通方程,圆C的极坐标方程化为直角坐标方程;
(Ⅱ)判断直线l和圆C的位置关系.
(3)选修4一5:不等式选讲
已知函数f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a,b∈R)恒成立,求实数x的范围.
本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分,作答时,先在答题卡上把所选题目对应的题号填入括号中.
(1)选修4-2:矩阵与变换
已知二阶矩阵M=
有特征值λ=-1及对应的一个特征向量e1=
.
(Ⅰ)求距阵M;
(Ⅱ)设曲线C在矩阵M的作用下得到的方程为x2+2y2=1,求曲线C的方程.
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线C的参数方程为
(t为参数),曲线P在以该直角坐标系的原点O的为极点,x轴的正半轴为极轴的极坐标系下的方程为p2-4pcosθ+3=0.
(Ⅰ)求曲线C的普通方程和曲线P的直角坐标方程;
(Ⅱ)设曲线C和曲线P的交点为A、B,求|AB|.
(3)选修4-5:不等式选讲
已知函数f(x)=|x+1|+|x-2|,不等式t≤f(x)在x∈R上恒成立.
(Ⅰ)求实数t的取值范围;
(Ⅱ)记t的最大值为T,若正实数a、b、c满足a2+b2+c2=T,求a+2b+c的最大值.
查看习题详情和答案>>
(1)选修4-2:矩阵与变换
已知二阶矩阵M=
|
|
(Ⅰ)求距阵M;
(Ⅱ)设曲线C在矩阵M的作用下得到的方程为x2+2y2=1,求曲线C的方程.
(2)选修4-4:坐标系与参数方程
在直角坐标系xOy中,曲线C的参数方程为
|
(Ⅰ)求曲线C的普通方程和曲线P的直角坐标方程;
(Ⅱ)设曲线C和曲线P的交点为A、B,求|AB|.
(3)选修4-5:不等式选讲
已知函数f(x)=|x+1|+|x-2|,不等式t≤f(x)在x∈R上恒成立.
(Ⅰ)求实数t的取值范围;
(Ⅱ)记t的最大值为T,若正实数a、b、c满足a2+b2+c2=T,求a+2b+c的最大值.
有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分.如果多做,则按所做的前两题记分.
(1)选修4-2:矩阵与变换
已知点A(1,0),B(2,2),C(3,0),矩阵M表示变换”顺时针旋转45°”.
(Ⅰ)写出矩阵M及其逆矩阵M-1;
(Ⅱ)请写出△ABC在矩阵M-1对应的变换作用下所得△A1B1C1的面积.
(2)选修4-4:坐标系与参数方程
过P(2,0)作倾斜角为α的直线l与曲线E:
(θ为参数)交于A,B两点.
(Ⅰ)求曲线E的普通方程及l的参数方程;
(Ⅱ)求sinα的取值范围.
(3)(选修4-5 不等式证明选讲)
已知正实数a、b、c满足条件a+b+c=3,
(Ⅰ)求证:
+
+
≤3;
(Ⅱ)若c=ab,求c的最大值.
查看习题详情和答案>>
(1)选修4-2:矩阵与变换
已知点A(1,0),B(2,2),C(3,0),矩阵M表示变换”顺时针旋转45°”.
(Ⅰ)写出矩阵M及其逆矩阵M-1;
(Ⅱ)请写出△ABC在矩阵M-1对应的变换作用下所得△A1B1C1的面积.
(2)选修4-4:坐标系与参数方程
过P(2,0)作倾斜角为α的直线l与曲线E:
|
(Ⅰ)求曲线E的普通方程及l的参数方程;
(Ⅱ)求sinα的取值范围.
(3)(选修4-5 不等式证明选讲)
已知正实数a、b、c满足条件a+b+c=3,
(Ⅰ)求证:
a |
b |
c |
(Ⅱ)若c=ab,求c的最大值.