摘要:如图1.已知抛物线的顶点为A(0.1).矩形CDEF的顶点C.F在抛物线上.D.E在x轴上.CF交y轴于点B(2.0).且其面积为8.⑴ 求此抛物线的解析式,⑵ 如图2.若P点为抛物线上不同于A的一点.连结PB并延长交抛物线于点Q.过点P.Q分别作x轴的垂线.垂足分别为S.R.①求证:PB=PS,②判断△SBR的形状,③试探索在线段SR上是否存在点M.使得以点A.S.M为顶点的三角形和以点Q.R.M为顶点的三角形相似.若存在.请找出M点的位置,若不存在.请说明理由.
网址:http://m.1010jiajiao.com/timu_id_649488[举报]
(本小题满分12分)如图1,已知抛物线经过坐标原点和轴上另一点,顶点的坐标为;矩形的顶点与点重合,分别在轴、轴上,且,.
(1)求该抛物线所对应的函数关系式;
(2)将矩形以每秒1个单位长度的速度从图1所示的位置沿轴的正方向匀速平行移动,同时一动点也以相同的速度从点出发向匀速移动.设它们运动的时间为秒(),直线与该抛物线的交点为(如图2所示).
①当时,判断点是否在直线上,并说明理由;
②设以为顶点的多边形面积为,试问是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由. 查看习题详情和答案>>
(1)求该抛物线所对应的函数关系式;
(2)将矩形以每秒1个单位长度的速度从图1所示的位置沿轴的正方向匀速平行移动,同时一动点也以相同的速度从点出发向匀速移动.设它们运动的时间为秒(),直线与该抛物线的交点为(如图2所示).
①当时,判断点是否在直线上,并说明理由;
②设以为顶点的多边形面积为,试问是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由. 查看习题详情和答案>>
(本小题满分12分)如图1,已知抛物线经过坐标原点和轴上另一点,顶点的坐标为;矩形的顶点与点重合,分别在轴、轴上,且,.
(1)求该抛物线所对应的函数关系式;
(2)将矩形以每秒1个单位长度的速度从图1所示的位置沿轴的正方向匀速平行移动,同时一动点也以相同的速度从点出发向匀速移动.设它们运动的时间为秒(),直线与该抛物线的交点为(如图2所示).
①当时,判断点是否在直线上,并说明理由;
②设以为顶点的多边形面积为,试问是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.
(本小题满分13分)如图,平面直角坐标系中有一直角梯形OMNH,点H的坐
标为(-8,0),点N的坐标为(-6,-4).
(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A,点N的对应点为B,点H的对应点为C);
(2)求出过A,B,C三点的抛物线的表达式;
(3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;
(4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.
(本小题满分13分)如图,平面直角坐标系中有一直角梯形OMNH,点H的坐
标为(-8,0),点N的坐标为(-6,-4).
(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A,点N的对应点为B,点H的对应点为C);
(2)求出过A,B,C三点的抛物线的表达式;
(3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;
(4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由. 查看习题详情和答案>>
标为(-8,0),点N的坐标为(-6,-4).
(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A,点N的对应点为B,点H的对应点为C);
(2)求出过A,B,C三点的抛物线的表达式;
(3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;
(4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由. 查看习题详情和答案>>