网址:http://m.1010jiajiao.com/timu_id_61977[举报]
1
11. . 12.
13.
14. 60 15. ①③
16.解:(Ⅰ)∵-
∴,(3分)
∴
又已知点为
的图像的一个对称中心。∴
而 (6分)
(Ⅱ)若,
(9分)
∵,∴
即m的取值范围是 (12分)
17. 解:(1)由已知得,∵
,∴
∵、
是方程
的两个根,∴
∴,
………………6分
(2)的可能取值为0,100,200,300,400
,
,
,
,
即
的分布列为:
故………12分
18解法一:
(1)延长C
所以F为C1N的中点,B为CN的中点。????2分
又M是线段AC1的中点,故MF∥AN。?????3分
又MF平面ABCD,AN
平面ABCD。
∴MF∥平面ABCD。 ???5分
(2)证明:连BD,由直四棱柱ABCD―A1B
可知A平面ABCD,
∴A
又∵AC∩A平面ACC
∴BD⊥平面ACC
在四边形DANB中,DA∥BN且DA=BN,所以四边形DANB为平行四边形
故NA∥BD,∴NA⊥平面ACC平面AFC1
∴平面AFC1⊥ACC
(3)由(2)知BD⊥ACCACC
又由BD⊥AC可知NA⊥AC,
∴∠C
在Rt△C,故∠C
∴平面AFC1与平面ABCD所成二面角的大小为30°或150°。???12分
19.解:(Ⅰ)因为成等差数列,点
的坐标分别为
所以
且
由椭圆的定义可知点的轨迹是以
为焦点长轴为4的椭圆(去掉长轴的端点),
所以.故顶点
的轨迹
方程为
.…………4分
(Ⅱ)由题意可知直线的斜率存在,设直线
方程为
.
由得
,
设两点坐标分别为
,则
,
,所以线段CD中点E的坐标为
,故CD垂直平分线l的方程为
,令y=0,得
与
轴交点的横坐标为
,由
得
,解得
,
又因为,所以
.当
时,有
,此时函数
递减,所以
.所以,
.
故直线与
轴交点的横坐标的范围是
.
………………12分
20.解:(1)因为
所以设S=(1)
S=……….(2)(1)+(2)得:
=
, 所以S=3012
(2)由两边同减去1,得
所以,
所以,
是以2为公差以
为首项的等差数列,
所以
(3)因为
所以
所以
>
21.解:(1)∵ ∴
…1分
设
则
……2分
∴在
上为减函数 又
时,
,
∴ ∴
在
上是减函数………4分(2)①
∵ ∴
或
时
∴
…………………………………6分
又≤
≤
对一切
恒成立 ∴
≤
≤
……………8分
②显然当或
时,不等式成立
…………………………9分
当,原不等式等价于
≥
………10分
下面证明一个更强的不等式:≥
…①
即≥
……②亦即
≥
…………………………11分
由(1) 知在
上是减函数 又
∴
……12分
∴不等式②成立,从而①成立 又
∴>
综合上面∴≤
≤
且
≤
≤
时,原不等式成立 ……………………………14分
本资料由《七彩教育网》www.7caiedu.cn 提供!
(本小题满分12分)如图,在直三棱柱ABC―A1B1C1中,∠ACB = 90°. AC = BC = a,
D、E分别为棱AB、BC的中点, M为棱AA1上的点,二面角M―DE―A为30°.
(1)求MA的长;w.w.w.k.s.5.u.c.o.m
(2)求点C到平面MDE的距离。
(本小题满分12分)某校高2010级数学培优学习小组有男生3人女生2人,这5人站成一排留影。
(1)求其中的甲乙两人必须相邻的站法有多少种? w.w.w.k.s.5.u.c.o.m
(2)求其中的甲乙两人不相邻的站法有多少种?
(3)求甲不站最左端且乙不站最右端的站法有多少种 ?
查看习题详情和答案>>(本小题满分12分)
某厂有一面旧墙长14米,现在准备利用这面旧墙建造平面图形为矩形,面积为126平方米的厂房,工程条件是①建1米新墙费用为a元;②修1米旧墙的费用为元;③拆去1米旧墙,用所得材料建1米新墙的费用为
元,经过讨论有两种方案: (1)利用旧墙的一段x米(x<14)为矩形厂房一面的边长;(2)矩形厂房利用旧墙的一面边长x≥14.问如何利用旧墙,即x为多少米时,建墙费用最省?(1)、(2)两种方案哪个更好?
查看习题详情和答案>>