摘要:(12分)如图.AB为半径R=6m的1/4光滑圆弧形.导轨圆心与A点等高.BC为长S=1.2m的光滑水平导轨.在B点与圆弧导轨相切.离地面高度h=2m.一质量m1=0.2kg的小球置于C点.另一质量为m2=0.4kg的小球置于B点.现给小球m1以V1=0.9m/s的水平速度.当m1运动到B时与m2发生正碰.碰后m2获得V2=0.6m/s的速度.g=10 m/s2.求从碰撞后到两球落地的时间差.(arccos0.997=4.4°.,结果保留两位有效数字)

网址:http://m.1010jiajiao.com/timu_id_573896[举报]

一、选择题(本题共10小题,每小题4分,共40分,有的小题只有一个选项符合题意,有的小题有几个选项符合题意,全部选对得4分,部分选对得2分,选错或不答得0分)

题号

1

2

3

4

5

6

7

8

9

10

答案

ABD

C

C

C

BD

C

AD

D

A

AB

二、实验题(每小题4分,共12分)

11、(1)     B        (2)    ACD     (3)     AEG

三、计算题(共4小题,每小题12分,共48分.解答应写出必要的文字说明,方程式和重要的演算步骤,只写出最后答案的不能得分。有数值计算的题,答案必须写出数值和单位)

12.解:(1)对A、B整体:3qE-qE=2ma    ①    得:a=qE/m    ②

(2)设所求的距离为L,则对B有:     ③

②、③联立得;

13.解:碰撞过程动量守恒mvo=(m+M)V         ①

由能量守恒得  FS=      ②

设木板的长度为L,应满足:L≥S          ③

由动量定理:Ft=MV                ④

由①②③联立得:     由①②④联立得:

14.解:前10s做匀加速运动F-μmgㄔma         且a=0.8 m/s2

后4s做匀减速运动F/3 ―μmg=ma’      且a’=-2 m/s2       

 联解得:μ=0.34    F=8.4N

15.解:碰撞过程,动量守恒:m1V1= m1V1/+ m2V2        所以:V1/=-0.3m/s

碰撞后m2上滑过程机械能守恒,设最大偏角为θ,则:

Cosθ=0.997       所以:θ=4.4°<10°

因此:m2在圆弧上的运动当作简谐振动处理,故:t1=

t2=S/ V2=1.2/0.6=2s       t3=S/ V1/ =1.2/0.3=4s

因为两物体平抛运动的时间相同,所以,所求的时间差为:△t=t1+ t2-t3=0.43s

 

 

 

 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网