摘要:学习了椭圆的定义.也有类似的思考 二.建构数学
网址:http://m.1010jiajiao.com/timu_id_567515[举报]
已知抛物线y2=2px(p>0),椭圆
+
=1(a>b>0),双曲线
-
=1(a>0,b>0),如图示,K为与焦点F对应的准线与x轴的交点,AB为过焦点的垂直于x轴的弦.
(1)在抛物线中,已知∠AKB为直角,则在椭圆和双曲线中∠AKB还为直角吗?试证明你的合情推理所得到的结论;
(2)在抛物线中,已知直线KA与抛物线只有一个公共点A,则在椭圆和双曲线中也有类似的性质吗?试选择椭圆证明你的类比推理.
查看习题详情和答案>>
x2 |
a2 |
y2 |
b2 |
x2 |
a2 |
y2 |
b2 |
(1)在抛物线中,已知∠AKB为直角,则在椭圆和双曲线中∠AKB还为直角吗?试证明你的合情推理所得到的结论;
(2)在抛物线中,已知直线KA与抛物线只有一个公共点A,则在椭圆和双曲线中也有类似的性质吗?试选择椭圆证明你的类比推理.
已知抛物线y2=2px(p>0),椭圆,双曲线,如图示,K为与焦点F对应的准线与x轴的交点,AB为过焦点的垂直于x轴的弦.
(1)在抛物线中,已知∠AKB为直角,则在椭圆和双曲线中∠AKB还为直角吗?试证明你的合情推理所得到的结论;
(2)在抛物线中,已知直线KA与抛物线只有一个公共点A,则在椭圆和双曲线中也有类似的性质吗?试选择椭圆证明你的类比推理.
查看习题详情和答案>>
(1)在抛物线中,已知∠AKB为直角,则在椭圆和双曲线中∠AKB还为直角吗?试证明你的合情推理所得到的结论;
(2)在抛物线中,已知直线KA与抛物线只有一个公共点A,则在椭圆和双曲线中也有类似的性质吗?试选择椭圆证明你的类比推理.
查看习题详情和答案>>
(文科做)已知点A1(2,0),A2(1,t),A3(0,b),A4(-1,t),A5(-2,0),其中t>0,b为正常数.
(1)半径为2的圆C1经过Ai(i=1,2,…,5)这五个点,求b和t的值;
(2)椭圆C2以F1(-c,0),F2(c,0)(c>0)为焦点,长轴长是4.若AiF1+AiF2=4(i=1,2,…,5),试用b表示t;
(3)在(2)中的椭圆C2中,两线段长的差A1F1-A1F2,A2F1-A2F2,…,A5F1-A5F2构成一个数列{an},求证:对n=1,2,3,4都有an+1<an.(本小题解答中用到了椭圆的第一定义与焦半径公式,新教材实验区的学生可不解第三小题,请学习时注意)
查看习题详情和答案>>
(1)半径为2的圆C1经过Ai(i=1,2,…,5)这五个点,求b和t的值;
(2)椭圆C2以F1(-c,0),F2(c,0)(c>0)为焦点,长轴长是4.若AiF1+AiF2=4(i=1,2,…,5),试用b表示t;
(3)在(2)中的椭圆C2中,两线段长的差A1F1-A1F2,A2F1-A2F2,…,A5F1-A5F2构成一个数列{an},求证:对n=1,2,3,4都有an+1<an.(本小题解答中用到了椭圆的第一定义与焦半径公式,新教材实验区的学生可不解第三小题,请学习时注意)
(文科做)已知点A1(2,0),A2(1,t),A3(0,b),A4(-1,t),A5(-2,0),其中t>0,b为正常数.
(1)半径为2的圆C1经过Ai(i=1,2,…,5)这五个点,求b和t的值;
(2)椭圆C2以F1(-c,0),F2(c,0)(c>0)为焦点,长轴长是4.若AiF1+AiF2=4(i=1,2,…,5),试用b表示t;
(3)在(2)中的椭圆C2中,两线段长的差A1F1-A1F2,A2F1-A2F2,…,A5F1-A5F2构成一个数列{an},求证:对n=1,2,3,4都有an+1<an.(本小题解答中用到了椭圆的第一定义与焦半径公式,新教材实验区的学生可不解第三小题,请学习时注意)
查看习题详情和答案>>
(文科做)已知点A1(2,0),A2(1,t),A3(0,b),A4(-1,t),A5(-2,0),其中t>0,b为正常数.
(1)半径为2的圆C1经过Ai(i=1,2,…,5)这五个点,求b和t的值;
(2)椭圆C2以F1(-c,0),F2(c,0)(c>0)为焦点,长轴长是4.若AiF1+AiF2=4(i=1,2,…,5),试用b表示t;
(3)在(2)中的椭圆C2中,两线段长的差A1F1-A1F2,A2F1-A2F2,…,A5F1-A5F2构成一个数列{an},求证:对n=1,2,3,4都有an+1<an.(本小题解答中用到了椭圆的第一定义与焦半径公式,新教材实验区的学生可不解第三小题,请学习时注意)
查看习题详情和答案>>
(1)半径为2的圆C1经过Ai(i=1,2,…,5)这五个点,求b和t的值;
(2)椭圆C2以F1(-c,0),F2(c,0)(c>0)为焦点,长轴长是4.若AiF1+AiF2=4(i=1,2,…,5),试用b表示t;
(3)在(2)中的椭圆C2中,两线段长的差A1F1-A1F2,A2F1-A2F2,…,A5F1-A5F2构成一个数列{an},求证:对n=1,2,3,4都有an+1<an.(本小题解答中用到了椭圆的第一定义与焦半径公式,新教材实验区的学生可不解第三小题,请学习时注意)
查看习题详情和答案>>