摘要:(Ⅰ)令要使有t意义.必须1+x≥0且1-x≥0.即-1≤x≤1,
网址:http://m.1010jiajiao.com/timu_id_567070[举报]
设函数f(x)=-cos2x-4t•sin
cos
+2t2-6t+2(x∈R),其中t∈R,将f(x)的最小值记为g(t).
(1)求g(t)的表达式;
(2)当-1≤t≤1时,要使关于t的方程g(t)=kt有且仅有一个实根,求实数k的取值范围 查看习题详情和答案>>
x |
2 |
x |
2 |
(1)求g(t)的表达式;
(2)当-1≤t≤1时,要使关于t的方程g(t)=kt有且仅有一个实根,求实数k的取值范围 查看习题详情和答案>>

(1)试判断函数f(x)=x3+
48 |
x |
(2)已知某质点的运动方程为S(t)=at-2
t+1 |
1 |
2 |
(2007•揭阳二模)如图(1)示,定义在D上的函数f(x),如果满足:对?x∈D,?常数A,都有f(x)≥A成立,则称函数f(x)在D上有下界,其中A称为函数的下界.(提示:图(1)、(2)中的常数A、B可以是正数,也可以是负数或零)

(Ⅰ)试判断函数f(x)=x3+
在(0,+∞)上是否有下界?并说明理由;
(Ⅱ)又如具有如图(2)特征的函数称为在D上有上界.请你类比函数有下界的定义,给出函数f(x)在D上有上界的定义,并判断(Ⅰ)中的函数在(-∞,0)上是否有上界?并说明理由;
(Ⅲ)已知某质点的运动方程为S(t)=at-2
,要使在t∈[0,+∞)上的每一时刻该质点的瞬时速度是以A=
为下界的函数,求实数a的取值范围.
查看习题详情和答案>>

(Ⅰ)试判断函数f(x)=x3+
48 |
x |
(Ⅱ)又如具有如图(2)特征的函数称为在D上有上界.请你类比函数有下界的定义,给出函数f(x)在D上有上界的定义,并判断(Ⅰ)中的函数在(-∞,0)上是否有上界?并说明理由;
(Ⅲ)已知某质点的运动方程为S(t)=at-2
t+1 |
1 |
2 |