摘要:(III) 设.任取.令..证明:给定正整数.对任意的正整数.成立不等式
网址:http://m.1010jiajiao.com/timu_id_567055[举报]
A是定义在[2,4]上且满足如下两个条件的函数Φ(x)组成的集合:
①对任意的x∈[1,2],都有Φ(2x)∈(1,2);
②存在常数L(0<L<1),使得对任意的x1,x2∈[1,2],都有|Φ(2x1)-Φ(2x2)|≤L|x1-x2|;
(1)设Φ(x)=
3]1+x,x∈[2,4],证明:Φ(x)∈A;
(2)设Φ(x)∈A,如果存在x0∈(1,2),使得x0=Φ(2x0),那么,这样的x0是唯一的;
(3)设Φ(x)∈A,任取x1∈(1,2),令xn+1=Φ(2xn),n=1,2,…,
证明:给定正整数k,对任意的正整数p,不等式|xk+p-xk|≤
|x2-x1|成立.
查看习题详情和答案>>
①对任意的x∈[1,2],都有Φ(2x)∈(1,2);
②存在常数L(0<L<1),使得对任意的x1,x2∈[1,2],都有|Φ(2x1)-Φ(2x2)|≤L|x1-x2|;
(1)设Φ(x)=
[ |
(2)设Φ(x)∈A,如果存在x0∈(1,2),使得x0=Φ(2x0),那么,这样的x0是唯一的;
(3)设Φ(x)∈A,任取x1∈(1,2),令xn+1=Φ(2xn),n=1,2,…,
证明:给定正整数k,对任意的正整数p,不等式|xk+p-xk|≤
Lk-1 |
1-L |
(2013•延庆县一模)A是由定义在[2,4]上且满足如下条件的函数φ(x)组成的集合:
(1)对任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常数L(0<L<0),使得对任意的x1,x2∈[1,2],都有|?(2x1)-?(2x2)|≤L|x1-x2|.
(Ⅰ)设φ(x)=
,x∈[2,4],证明:φ(x)∈A;
(Ⅱ)设φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么这样的x0是唯一的;
(Ⅲ)设φ(x)∈A,任取xn∈(1,2),令xn+1=φ(2nx),n=1,2,…,证明:给定正整数k,对任意的正整数p,不等式|xk+p-xk|≤
|x2-x1|成立.
查看习题详情和答案>>
(1)对任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常数L(0<L<0),使得对任意的x1,x2∈[1,2],都有|?(2x1)-?(2x2)|≤L|x1-x2|.
(Ⅰ)设φ(x)=
3 | 1+x |
(Ⅱ)设φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么这样的x0是唯一的;
(Ⅲ)设φ(x)∈A,任取xn∈(1,2),令xn+1=φ(2nx),n=1,2,…,证明:给定正整数k,对任意的正整数p,不等式|xk+p-xk|≤
Lk-1 |
1-L |
A是定义在[2,4]上且满足如下条件的函数φ(x)组成的集合:①对任意的x∈[1,2],都有φ(2x)∈(1,2);②存在常数L(0<L<1),使得对任意的x1,x2∈[1,2],都有|φ(2x1)-φ(2x2)|≤L|x1-x2|.
(Ⅰ)设φ(x)=,x∈[2,4],证明:φ(x)∈A.
(Ⅱ)设φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么这样的x0是唯一的.
(Ⅲ)设φ(x)∈A,任取x1∈(1,2),令xn+1=φ(2xn),n=1,2,…,证明:给定正整数k,对任意的正整数p,成立不等式|xk+p-xk|≤|x2-x1|.
查看习题详情和答案>>
A是定义在[2,4]上且满足如下两个条件的函数Φ(x)组成的集合:
①对任意的x∈[1,2],都有Φ(2x)∈(1,2);
②存在常数L(0<L<1),使得对任意的x1,x2∈[1,2],都有|Φ(2x1)-Φ(2x2)|≤L|x1-x2|;
(1)设,证明:Φ(x)∈A;
(2)设Φ(x)∈A,如果存在x∈(1,2),使得x=Φ(2x),那么,这样的x是唯一的;
(3)设Φ(x)∈A,任取x1∈(1,2),令xn+1=Φ(2xn),n=1,2,…,
证明:给定正整数k,对任意的正整数p,不等式成立.
查看习题详情和答案>>
①对任意的x∈[1,2],都有Φ(2x)∈(1,2);
②存在常数L(0<L<1),使得对任意的x1,x2∈[1,2],都有|Φ(2x1)-Φ(2x2)|≤L|x1-x2|;
(1)设,证明:Φ(x)∈A;
(2)设Φ(x)∈A,如果存在x∈(1,2),使得x=Φ(2x),那么,这样的x是唯一的;
(3)设Φ(x)∈A,任取x1∈(1,2),令xn+1=Φ(2xn),n=1,2,…,
证明:给定正整数k,对任意的正整数p,不等式成立.
查看习题详情和答案>>
A是由定义在[2,4]上且满足如下条件的函数φ(x)组成的集合:
(1)对任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常数L(0<L<0),使得对任意的x1,x2∈[1,2],都有|?(2x1)-?(2x2)|≤L|x1-x2|.
(Ⅰ)设φ(x)=
,x∈[2,4],证明:φ(x)∈A;
(Ⅱ)设φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么这样的x0是唯一的;
(Ⅲ)设φ(x)∈A,任取xn∈(1,2),令xn+1=φ(2nx),n=1,2,…,证明:给定正整数k,对任意的正整数p,不等式|xk+p-xk|≤
|x2-x1|成立.
查看习题详情和答案>>
(1)对任意x∈[1,2],都有φ(2x)∈(1,2);
(2)存在常数L(0<L<0),使得对任意的x1,x2∈[1,2],都有|?(2x1)-?(2x2)|≤L|x1-x2|.
(Ⅰ)设φ(x)=
3 | 1+x |
(Ⅱ)设φ(x)∈A,如果存在x0∈(1,2),使得x0=φ(2x0),那么这样的x0是唯一的;
(Ⅲ)设φ(x)∈A,任取xn∈(1,2),令xn+1=φ(2nx),n=1,2,…,证明:给定正整数k,对任意的正整数p,不等式|xk+p-xk|≤
Lk-1 |
1-L |