网址:http://m.1010jiajiao.com/timu_id_560602[举报]
一.选择题:
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
D
C
B
C
C
B
D
B
C
B
A
二.填空题:
13. 14.存在实数m,关于x的方程x2+x+m = 0没有实根
15.或
16.
(2)
,记
∴ ①
②
①②:
∴,即
………12分
19.(1)
………4分
(2),
………6分
同理:
………10分
21.(1)∵
∴
∵
对
恒成立,∴
在
上是增函数
又∵的定义域为R关于原点对称,
∴
是奇函数。……6分
(2)由第(1)题的结论知:在
上是奇函数又是增函数。
∴对一切
都成立,
对一切
都成立,应用导数不难求出函数
在
上的最大值为
对一切
都成立
………10分
或
……12分
再由点A在椭圆上,得过A的切线方程为
……8分
同理过B的切线方程为:
,设两切线的交点坐标为
,则:
,即AB的方程为:
,又
,消去
,得:
直线AB恒过定点。
…………14分
(本小题满分12分)
如图,已知在坐标平面xOy内,M、N是x轴上关于原点O对称的两点,P是上半平面内一点,△PMN的面积为,点A的坐标为(1+
),
=m·
(m为常数),
(1)求以M、N为焦点且过点P的椭圆方程;
(2)过点B(-1,0)的直线l交椭圆于C、D两点,交直线x=-4于点E,点B、E分的比分别为λ1、λ2,求λ1+λ2的值。
查看习题详情和答案>>
(本小题满分12分)如图,在以点O为圆心,|AB|=4为直径的半圆ADB中,OD⊥AB,P是半圆弧上一点,∠POB=30°,曲线C是满足||MA|-|MB||为定值的动点M的轨迹,且曲线C过点P.
(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)设过点D的直线l与曲线C相交于不同的两点E、F,求直线l斜率的取值范围.
(本小题满分12分)如图,在以点O为圆心,|AB|=4为直径的半圆ADB中,OD⊥AB,P是半圆弧上一点,∠POB=30°,曲线C是满足||MA|-|MB||为定值的动点M的轨迹,且曲线C过点P.
(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)设过点D的直线l与曲线C相交于不同的两点E、F,求直线l斜率的取值范围.