网址:http://m.1010jiajiao.com/timu_id_560113[举报]
一、选择题:
1.C 2.D 3.D 4.C 5. B 6.C 7. C 8.C 9. A
1,3,5
二、填空:
13..y=54.8(1+x%)16 14.(0,) 15.或 16.
三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤。
17.解(1)
(2)
18.解:(1)当时.…………2分
作∥交于,连.
由⊥面,知⊥面.…………3分
当为中点时,为中点.
∵△为正三角形,
∴⊥,∴…………5分
∴⊥…………6分
(2)过作⊥于,连结,则⊥,
∴∠为二面角P―AC―B的平面角,,
…………8分
…………10分
……12分
19.解:(1)f(x)=-a2(x-)2+c+,……………(1分)
∵a≥,∴∈(0,1,………………………………………(2分)
∴x∈(0,1时,[f(x)]max=c+,……………………………(3分)
∵f(x)≤1,则[f(x)]max=c+≤1,即c≤,……………(5分)
∴对任意x∈[0,1],总有f(x)≤1成立时,可得c≤.……(6分)
(2)∵a≥,∴>0………………………(7分)
又抛物线开口向下,f(x)=0的两根在[0,内,…………(8分)
…………(11分)
所求实数c的取值范围为。
20.解:(1)当时,,不成等差数列。…(1分)
当时, ,
∴ , ∴,∴ …………(4分)
∴…………………….5分
(2)………………(6分)
……………………(7分)
………(8分)
≤ ,∴≤ ∴≥……………(10分)
又≤ ,
∴的最小值为……………….12分
21.解:(1)
令……………………2分
当是增函数
当是减函数……………………4分
……6分
(2)因为,所以,
……………………8分
所以的图象在上有公共点,等价于…………10分
解得…………………12分
22解:(1)由题意:∵|PA|=|PB|且|PB|+|PF|=r=8
∴|PA|+|PF|=8>|AF|
∴P点轨迹为以A、F为焦点的椭圆…………………………3分
设方程为
………………………5分
(2)假设存在满足题意的直线l,其斜率存在,设为k,设
(本小题满分12分)
已知,椭圆C过点A,两个焦点为(-1,0),(1,0)。
(1) 求椭圆C的方程;
(2) E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。
(本小题满分12分)已知,设命题p:函数在R上单调递减,q:设函数,函数恒成立,若为假,为真,求a的取值范围.
已知,,O为坐标原点,动点E满足:
(Ⅰ) 求点E的轨迹C的方程;
(Ⅱ)过曲线C上的动点P向圆O:引两条切线PA、PB,切点分别为A、B,直线AB与x轴、y轴分别交于M、N两点,求ΔMON面积的最小值.
(本小题满分12分)已知,如图,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点G作AB的垂线,交直线AC于点E,交AD于点F,过G作⊙O的切线,切点为H.
求证:(1)C,D,F,E四点共圆;
(2)GH2=GE·GF.
已知, (ω>0),函数的最小正周期为π
(1) 求函数的单调递减区间及对称中心;
(2) 求函数在区间上的最大值与最小值.