题目内容
(本小题满分12分)已知,如图,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点G作AB的垂线,交直线AC于点E,交AD于点F,过G作⊙O的切线,切点为H.
求证:(1)C,D,F,E四点共圆;
(2)GH2=GE·GF.
【答案】
见解析。
【解析】本题考查的知识点是与圆相关的比例线段及圆内接四边形的判定,其中根据圆内接四边形判定定理,判断C,D,F,E四点共圆,是解答本题的关键.
(I)连接BC.由已知中AB是⊙O的直径,可得∠ACB=90°,由过点G作AB的垂线,交AC的延长线于点E,可得∠AGE=90°,进而得到∠FDC=∠AEG,根据圆内接四边形判定定理,即可得到C,D,F,E四点共圆;
(Ⅱ)由(I)中C,D,F,E四点共圆,则GCD和GEF分别为圆的两条件割线,则GE•GF=GC•GD,又由已知中GH为圆O的切线,GCD为圆O的割线,由切割线定理可得GH2=GC•GD,进而得到结论.
证明:(1)连接CB,
∵∠ACB=90°,AG⊥FG,
又∵∠EAG=∠BAC,
∴∠ABC=∠AEG.
∵∠ADC=180°-∠ABC
=180°-∠AEG=∠CEF,
∴∠ADC+∠FDC=∠CEF+∠FDC=180°,
∴C,D,F,E四点共圆. …………6分
(2)由C,D,F,E四点共圆,知∠GCE=∠AFE,∠GEC=∠GDF,
∴△GCE∽△GFD,
故=
,即GC·GD=GE·GF.
∵GH为圆的切线,GCD为割线,
∴GH2=GC·GD,∴GH2=GE·GF. …………12分

练习册系列答案
相关题目