网址:http://m.1010jiajiao.com/timu_id_556623[举报]
1.C 2.D 3.A 4.A 5.C 6.A 7.D 8.A 9.C 10.D 11.D12.B
13.2 14. 15.16.①③④
17.
18.解:
⑴ .
⑵在上单调递增,在上单调递减.
所以,当时,;当时,.
故的值域为.
19.解:⑴直线①,
过原点垂直于的直线方程为②
解①②得,
∵椭圆中心O(0,0)关于直线的对称点在椭圆C的右准线上,
∴, …………………(分)
∵直线过椭圆焦点,∴该焦点坐标为(2,0),
∴,
故椭圆C的方程为 ③…………………12分)
20.点评:本小题考查二次函数、等差数列、数列求和、不等式等基础知识和基本的运算技能,考查分析问题的能力和推理能力。
解:(Ⅰ)设这二次函数f(x)=ax2+bx (a≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x-2,得
a=3 , b=-2, 所以 f(x)=3x2-2x.
又因为点均在函数的图像上,所以=3n2-2n.
当n≥2时,an=Sn-Sn-1=(3n2-2n)-
=6n-5.
当n=1时,a1=S1=3×12-2=6×1-5,所以,an=6n-5 ()
(Ⅱ)由(Ⅰ)
得知==,
故Tn==
=(1-
因此,要使(1-)<()成立的m,必须且仅须满足≤,即m≥10,所以满足要求的最小正整数m为10.
21.(1)
(2)由
令得,增区间为和,
减区间为
2
+
0
-
0
+
↑
↓
↑
由表可知:当时,
解得:
的取值范围为
22.(1)
(2)
已知函数处取得极值,在x=2处的切线平行于向量
(Ⅰ)求a,b的值;
(Ⅱ)求的单调区间;
(Ⅲ)是否存在正整数m,使得方程在区间(m,m+1)内有且只有两个不等实根?若存在,求出m的值;若不存在,说明理由.
查看习题详情和答案>>已知函数处取得极小值,其图象过点A(0,1),且在点A处切线的斜率为—1。
(Ⅰ)求的解析式;
(Ⅱ)设函数上的值域也是,则称区间为函数的“保值区间”。证明:当不存在“保值区间”;
查看习题详情和答案>>1 | 3 |
(Ⅰ)当a=3时,求曲线y=f(x)在(1,f(1))处的切线方程;
(Ⅱ) 若函数f(x)在区间(-2,0)上是减函数,求a的取值范围;
(Ⅲ)若函数y=f(x)在区间[-1,1]上的最小值为-2时,求a的值. 查看习题详情和答案>>