题目内容

已知函数f(x)=lnx-
1
2
ax2+bx
(a>0),且f′(1)=0.
(Ⅰ)试用含有a的式子表示b,并求f(x)的极值;
(Ⅱ)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2),如果在函数图象上存在点M(x0,y0)(其中x0∈(x1,x2)),使得点M处的切线l∥AB,则称AB存在“伴随切线”.特别地,当x0=
x1+x2
2
时,又称AB存在“中值伴随切线”.试问:在函数f(x)的图象上是否存在两点A、B使得它存在“中值伴随切线”,若存在,求出A、B的坐标,若不存在,说明理由.
分析:(Ⅰ)求出f′(x)根据且f'(1)=0求出a和b的关系即可,根据自变量的取值范围及a>0,令导函数大于0得到函数的增区间,令导函数小于0得到函数的减区间,根据增减性得到函数的极值即可;
(Ⅱ)不存在,设两点A(x1,y1),B(x2,y2),代入到函数关系式中,然后求出直线AB的斜率,并求出在M的切线的斜率,两者相等得到等式,化简后令其左边设为函数g(t),求出函数g(t)的最小值,这表明在函数f(x)上不存在两点A、B使得它存在“中值伴随切线”.
解答:解:(Ⅰ)f(x)的定义域为(0,+∞),∵f′(x)=
1
x
-ax+b
,f'(1)=1-a+b=0,∴b=a-1.
代入f′(x)=
1
x
-ax+b
,得f′(x)=
1
x
-ax
+a-1=-
(ax+1)(x-1)
x

当f'(x)>0时,-
(ax+1)(x-1)
x
>0
,由x>0,得(ax+1)(x-1)<0,
又a>0,∴0<x<1,即f(x)在(0,1)上单调递增;
当f'(x)<0时,-
(ax+1)(x-1)
x
<0
,由x>0,得(ax+1)(x-1)>0,
又a>0,∴x>1,即f(x)在(1,+∞)上单调递减.
∴f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
所以,当x=1时,f(x)的极大值为f(1)=ln1-
1
2
a+b=
a
2
-1

(Ⅱ)在函数f(x)的图象上不存在两点A、B使得它存在“中值伴随切线”.
假设存在两点A(x1,y1),B(x2,y2),不妨设0<x1<x2,则y1=lnx1-
1
2
a
x
2
1
+(a-1)x1
y2=lnx2-
1
2
a
x
2
2
+(a-1)x2
kAB=
y2-y1
x2-x1
=
(lnx2-lnx1)-
1
2
a(
x
2
2
-
x
2
1
)+(a-1)(x2-x1)
x2-x1
=
lnx2-lnx1
x2-x1
-
1
2
a(x1+x2)+a-1

在函数图象x0=
x1+x2
2
处的切线斜率k=f′(x0)=f′(
x1+x2
2
)=
2
x1+x2
-a•
x1+x2
2
+(a-1)

lnx2-lnx1
x2-x1
-
1
2
a(x1+x2)+a-1
=
2
x1+x2
-a•
x1+x2
2
+(a-1)

化简得:
lnx2-lnx1
x2-x1
=
2
x1+x2
ln
x2
x1
=
2(x2-x1)
x2+x1
=
2(
x2
x1
-1)
x2
x1
+1

x2
x1
=t
,则t>1,上式化为:lnt=
2(t-1)
t+1
=2-
4
t+1
,即lnt+
4
t+1
=2

若令g(t)=lnt+
4
t+1
g′(t)=
1
t
-
4
(t+1)2
=
(t-1)2
t(t+1)2

由t≥1,g'(t)≥0,∴g(t)在[1,+∞)在上单调递增,g(t)>g(1)=2.
这表明在(1,+∞)内不存在t,使得lnt+
4
t+1
=2.
综上所述,在函数f(x)上不存在两点A、B使得它存在“中值伴随切线”.
点评:考查利用导数研究函数单调性的能力,利用导数求函数极值的能力,以及直线斜率的计算公式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网