网址:http://m.1010jiajiao.com/timu_id_556614[举报]
1.C 2.D 3.A 4.A 5.C 6.A 7.D 8.A 9.C 10.D 11.D12.B
13.2 14. 15.16.①③④
17.
18.解:
⑴ .
⑵在上单调递增,在上单调递减.
所以,当时,;当时,.
故的值域为.
19.解:⑴直线①,
过原点垂直于的直线方程为②
解①②得,
∵椭圆中心O(0,0)关于直线的对称点在椭圆C的右准线上,
∴, …………………(分)
∵直线过椭圆焦点,∴该焦点坐标为(2,0),
∴,
故椭圆C的方程为 ③…………………12分)
20.点评:本小题考查二次函数、等差数列、数列求和、不等式等基础知识和基本的运算技能,考查分析问题的能力和推理能力。
解:(Ⅰ)设这二次函数f(x)=ax2+bx (a≠0) ,则 f`(x)=2ax+b,由于f`(x)=6x-2,得
a=3 , b=-2, 所以 f(x)=3x2-2x.
又因为点均在函数的图像上,所以=3n2-2n.
当n≥2时,an=Sn-Sn-1=(3n2-2n)-
=6n-5.
当n=1时,a1=S1=3×12-2=6×1-5,所以,an=6n-5 ()
(Ⅱ)由(Ⅰ)
得知==,
故Tn==
=(1-
因此,要使(1-)<()成立的m,必须且仅须满足≤,即m≥10,所以满足要求的最小正整数m为10.
21.(1)
(2)由
令得,增区间为和,
减区间为
2
+
0
-
0
+
↑
↓
↑
由表可知:当时,
解得:
的取值范围为
22.(1)
(2)
已知方向向量为的直线过椭圆C:=1(a>b>0)的焦点以及点(0,),椭圆C的中心关于直线的对称点在椭圆C的右准线上。
⑴求椭圆C的方程。
⑵过点E(-2,0)的直线交椭圆C于点M、N,且满足,(O为坐标原点),求直线的方程。
查看习题详情和答案>>已知方向向量为的直线l过点()和椭圆的焦点,且椭圆C的中心关于直线l的对称点在椭圆C的右准线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在过点E(-2,0)的直线m交椭圆C于点M、N,满足=,cot∠MON≠0(O为原点).若存在,求直线m的方程;若不存在,请说明理由.
查看习题详情和答案>>已知方向向量为的直线点和椭圆的焦点,且椭圆C的中心关于直线的对称点在椭圆C的右准线上。
(1)求椭圆C的方程
(2)是否存在过点的直线交椭圆C于点M,N且满足
(O为原点),若存在求出直线的方程,若不存在说明理由。
查看习题详情和答案>>