网址:http://m.1010jiajiao.com/timu_id_539000[举报]
一、选择题
1 B
二、填空题
11 192 12 286 13 14 15 840 16
三、解答题
17 (本题12分)
解:(I)
2分
(II)
8分
由已知条件
根据正弦定理,得 10分
12分
18 (本题12分)
解:(I)在7人中选出3人,总的结果数是种, (2分)
记“被选中的3人中至多有1名女生”为事件A,则A包含两种情形:
①被选中的是1名女生,2名男生的结果数是,
②被选中的是3名男生的结果数是 4分
至多选中1名女生的概率为 6分
(II)由题意知随机变量可能的取值为:0,1,2,3,则有
,
8分
∴
0
1
2
3
P
10分
∴的数学期望 12分
19 (本题12分)
解:(I)连接PO,以OA,OB,OP所在的直线为x轴,y轴,z轴
建立如图所示的空间直角坐标系。 2分
∵正四棱锥的底面边长和侧棱长都是2。
∴
∴
(II)∵
∴是平面PDB的一个法向量。 8分
由(I)得
设平面BMP的一个法向量为
则由,得
,不妨设c=1
得平面BMP的一个法向量为 10分
∵二面角M―PB―D小于90°
∴二面角M―PB―D的余弦值为 12分
20 (本题12分)
解:(I)由已知得
2分
由,得 4分
即。解得k=50或(舍去)
6分
(II)由,得
8分
9分
是等差数列
则
11分
12分
21 (本题14分)
解:(I)依题意得
2分
把
解得
∴椭圆的方程为 4分
(II)由(I)得,设,如图所示,
∵M点在椭圆上,
∴ ①
∵M点异于顶点A、B,
∴
由P、A、M三点共线,可得,
从而 7分
∴ ② 8分
将①式代入②式化简得 10分
∵
∴ 12分
于是∠MBP为锐角,从而∠MBN为钝角,
∴点B在以MN为直径的圆内。 14分
22 (本题14分)
解:(I),
令 2分
而
∴当 4分
(II)设函数g(x)在[0,2]上的值域是A,
∵若对任意
∴ 6分
①当,
∴函数上单调递减。
∵
∴; 8分
②当
令(舍去) 9分
(i)当时,的变化如下表:
(ii)当
∴函数g(x)在(0,2)上单调递减。
综上可知,实数a的取值范围是
(本小题满分1 2分)
如图,四边形ABCD中,,AD∥BC,AD =6,BC =4,AB =2,点E、F分别在BC、AD上,EF∥AB.现将四边形ABEF沿EF折起,使平面ABCD平面EFDC,设AD中点为P.
( I )当E为BC中点时,求证:CP//平面ABEF
(Ⅱ)设BE=x,问当x为何值时,三棱锥A-CDF的体积有最大值?并求出这个最大值。
查看习题详情和答案>>
(选修4-4:坐标系与参数方程) (本小题满分10分)
在直角坐标系xoy中,直线的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|.
23(本小题满分10分)
已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点,AB=4AN, M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
24.(本小题满分10分)
将一枚硬币连续抛掷次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为,正面向上的次数为偶数的概率为.
(Ⅰ)若该硬币均匀,试求与;
(Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较与的大小.
查看习题详情和答案>>(选修4-4:坐标系与参数方程) (本小题满分10分)
在直角坐标系xoy中,直线的参数方程为(t为参数),在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为.
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|.
23(本小题满分10分)
已知三棱锥P-ABC中,PA⊥平面ABC,AB⊥AC,,N为AB上一点,AB=4AN, M、S分别为PB,BC的中点.以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立如图空间直角坐标系.
(Ⅰ)证明:CM⊥SN;
(Ⅱ)求SN与平面CMN所成角的大小.
24.(本小题满分10分)
将一枚硬币连续抛掷次,每次抛掷互不影响. 记正面向上的次数为奇数的概率为,正面向上的次数为偶数的概率为.
(Ⅰ)若该硬币均匀,试求与;
(Ⅱ)若该硬币有暇疵,且每次正面向上的概率为,试比较与的大小.
查看习题详情和答案>>