摘要:综合①.②得.不等式成立.
网址:http://m.1010jiajiao.com/timu_id_534932[举报]
高三年级在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数,满分100分.按照大于等于80分为优秀,小于80分为合格.为了解学生在该维度的测评结果,从毕业班中随机抽出一个班的数据.该班共有60名学生,得到如下的列联表.
(2)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?
(3)如果想了解全年级学生该维度的表现情况,采取简单随机抽样的方式在全校学生中抽取少数一部分人来分析,请你选择一个合适的抽样方法,并解释理由;
(4)学生代表、教师代表、家长代表、教务员四人,分别对测评结果是优秀的20名学生进行检查,检查他们是否躲优秀的相4名检查人员各自纖立的舰20学生中随机抽取一名,设其中男生的人数为随机变量x,求随机变量x的分布列期望. 查看习题详情和答案>>
(2)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?
(3)如果想了解全年级学生该维度的表现情况,采取简单随机抽样的方式在全校学生中抽取少数一部分人来分析,请你选择一个合适的抽样方法,并解释理由;
(4)学生代表、教师代表、家长代表、教务员四人,分别对测评结果是优秀的20名学生进行检查,检查他们是否躲优秀的相4名检查人员各自纖立的舰20学生中随机抽取一名,设其中男生的人数为随机变量x,求随机变量x的分布列期望. 查看习题详情和答案>>
高三年级在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数,满分100分.按照大于等于80分为优秀,小于80分为合格.为了解学生在该维度的测评结果,从毕业班中随机抽出一个班的数据.该班共有60名学生,得到如下的列联表.
(2)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?
(3)如果想了解全年级学生该维度的表现情况,采取简单随机抽样的方式在全校学生中抽取少数一部分人来分析,请你选择一个合适的抽样方法,并解释理由;
(4)学生代表、教师代表、家长代表、教务员四人,分别对测评结果是优秀的20名学生进行检查,检查他们是否躲优秀的相4名检查人员各自纖立的舰20学生中随机抽取一名,设其中男生的人数为随机变量x,求随机变量x的分布列期望.
查看习题详情和答案>>
(2)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?
(3)如果想了解全年级学生该维度的表现情况,采取简单随机抽样的方式在全校学生中抽取少数一部分人来分析,请你选择一个合适的抽样方法,并解释理由;
(4)学生代表、教师代表、家长代表、教务员四人,分别对测评结果是优秀的20名学生进行检查,检查他们是否躲优秀的相4名检查人员各自纖立的舰20学生中随机抽取一名,设其中男生的人数为随机变量x,求随机变量x的分布列期望.
查看习题详情和答案>>
本小题满分13分)
高三年级在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数,满分100分.按照大于等于80分为优秀,小于80分为合格.为了解学生在该维度的测评结果,从毕业班中随机抽出一个班的数据.该班共有60名学生,得到如下的列联表.
(2)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?
(3)如果想了解全年级学生该维度的表现情况,采取简单随机抽样的方式在全校学生中抽取少数一部分人来分析,请你选择一个合适的抽样方法,并解释理由;
(4) 学生代表、教师代表、家长代表、教务员四人,分别对测评结果是优秀的20名学生进行检查,检查他们是否躲优秀的相4名检查人员各自纖立的舰20学生中随机抽取一名,设其中男生的人数为随机变量x,求随机变量x的分布列期望.
高三年级在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数,满分100分.按照大于等于80分为优秀,小于80分为合格.为了解学生在该维度的测评结果,从毕业班中随机抽出一个班的数据.该班共有60名学生,得到如下的列联表.
(2)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?
(3)如果想了解全年级学生该维度的表现情况,采取简单随机抽样的方式在全校学生中抽取少数一部分人来分析,请你选择一个合适的抽样方法,并解释理由;
(4) 学生代表、教师代表、家长代表、教务员四人,分别对测评结果是优秀的20名学生进行检查,检查他们是否躲优秀的相4名检查人员各自纖立的舰20学生中随机抽取一名,设其中男生的人数为随机变量x,求随机变量x的分布列期望.
已知数列是各项均不为0的等差数列,公差为d,为其前n项和,且满足,.数列满足,,为数列的前n项和.
(1)求数列的通项公式和数列的前n项和;
(2)若对任意的,不等式恒成立,求实数的取值范围;
(3)是否存在正整数,使得成等比数列?若存在,求出所有的值;若不存在,请说明理由.
【解析】第一问利用在中,令n=1,n=2,
得 即
解得,, [
又时,满足,
,
第二问,①当n为偶数时,要使不等式恒成立,即需不等式恒成立.
,等号在n=2时取得.
此时 需满足.
②当n为奇数时,要使不等式恒成立,即需不等式恒成立.
是随n的增大而增大, n=1时取得最小值-6.
此时 需满足.
第三问,
若成等比数列,则,
即.
由,可得,即,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,, [
又时,满足,
,
.
(2)①当n为偶数时,要使不等式恒成立,即需不等式恒成立.
,等号在n=2时取得.
此时 需满足.
②当n为奇数时,要使不等式恒成立,即需不等式恒成立.
是随n的增大而增大, n=1时取得最小值-6.
此时 需满足.
综合①、②可得的取值范围是.
(3),
若成等比数列,则,
即.
由,可得,即,
.
又,且m>1,所以m=2,此时n=12.
因此,当且仅当m=2, n=12时,数列中的成等比数列
查看习题详情和答案>>