摘要:由定义(2)知:关于点对称.--------8分
网址:http://m.1010jiajiao.com/timu_id_534287[举报]
(本题满分18分)第(1)小题满分4分,第(2)小题满分8分,第(3)小题满分6分。
定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”。如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比。已知椭圆。
若椭圆,判断与是否相似?如果相似,求出与的相似比;如果不相似,请说明理由;
写出与椭圆相似且短半轴长为的椭圆的方程;若在椭圆上存在两点、关于直线对称,求实数的取值范围?
如图:直线与两个“相似椭圆”和分别交于点和点,证明:
查看习题详情和答案>>(本题满分18分)第(1)小题满分4分,第(2)小题满分8分,第(3)小题满分6分。
定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”。如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比。已知椭圆。
若椭圆,判断与是否相似?如果相似,求出与的相似比;如果不相似,请说明理由;
写出与椭圆相似且短半轴长为的椭圆的方程;若在椭圆上存在两点、关于直线对称,求实数的取值范围?
如图:直线与两个“相似椭圆”和分别交于点和点,证明:
查看习题详情和答案>>(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
在平行四边形中,已知过点的直线与线段分别相交于点。若。
(1)求证:与的关系为;
(2)设,定义函数,点列在函数的图像上,且数列是以首项为1,公比为的等比数列,为原点,令,是否存在点,使得?若存在,请求出点坐标;若不存在,请说明理由。
(3)设函数为上偶函数,当时,又函数图象关于直线对称, 当方程在上有两个不同的实数解时,求实数的取值范围。
查看习题详情和答案>>