摘要:.化简得-------------14分
网址:http://m.1010jiajiao.com/timu_id_53240[举报]
请先阅读:
在等式cos2x=2cos2x-1(x∈R)的两边求导,得:(cos2x)′=(2cos2x-1)′,由求导法则,得(-sin2x)•2=4cosx•(-sinx),化简得等式:sin2x=2cosx•sinx.
(1)利用上题的想法(或其他方法),结合等式(1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn(x∈R,正整数n≥2),证明:n[(1+x)n-1-1]=
k
xk-1.
(2)对于正整数n≥3,求证:
(i)
(-1)kk
=0;
(ii)
(-1)kk2
=0;
(iii)
=
.
查看习题详情和答案>>
在等式cos2x=2cos2x-1(x∈R)的两边求导,得:(cos2x)′=(2cos2x-1)′,由求导法则,得(-sin2x)•2=4cosx•(-sinx),化简得等式:sin2x=2cosx•sinx.
(1)利用上题的想法(或其他方法),结合等式(1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn(x∈R,正整数n≥2),证明:n[(1+x)n-1-1]=
n |
k=2 |
C | k n |
(2)对于正整数n≥3,求证:
(i)
n |
k=1 |
C | k n |
(ii)
n |
k=1 |
C | k n |
(iii)
n |
k=1 |
1 |
k+1 |
C | k n |
2n+1-1 |
n+1 |
我们把在平面内与直线垂直的非零向量称为直线的法向量,在平面直角坐标系xOy中,利用求动点轨迹方程的方法,可以求出过点A(-3,4),且其法向量为
=(1,-2)的直线方程为1x(x+3)+(-2)×(y-4)=0,化简得x-2y+11=0.类比上述方法,在空间坐标系O-xyz中,经过点A(1,2,3),且其法向量为
=(-1,-2,1)的平面方程为
.
查看习题详情和答案>>
n |
n |
请先阅读:
设可导函数 f(x) 满足f(-x)=-f(x)(x∈R).
在等式f(-x)=-f(x) 的两边对x求导,
得(f(-x))′=(-f(x))′,
由求导法则,得f′(-x)•(-1)=-f′(x),
化简得等式f′(-x)=f′(x).
(Ⅰ)利用上述想法(或其他方法),结合等式(1+x)n=
+
x+
x2+…+
xn(x∈R,整数n≥2),证明:n[(1+x)n-1-1]=2
x+3
x2+4
x3+…+n
xn-1;
(Ⅱ)当整数n≥3时,求
-2
+3
-…+(-1)n-1n
的值;
(Ⅲ)当整数n≥3时,证明:2
-3•2
+4•3
+…+(-1)n-2n(n-1)
=0.
查看习题详情和答案>>
设可导函数 f(x) 满足f(-x)=-f(x)(x∈R).
在等式f(-x)=-f(x) 的两边对x求导,
得(f(-x))′=(-f(x))′,
由求导法则,得f′(-x)•(-1)=-f′(x),
化简得等式f′(-x)=f′(x).
(Ⅰ)利用上述想法(或其他方法),结合等式(1+x)n=
C | 0 n |
C | 1 n |
C | 2 n |
C | n n |
C | 2 n |
C | 3 n |
C | 4 n |
C | n n |
(Ⅱ)当整数n≥3时,求
C | 1 n |
C | 2 n |
C | 3 n |
C | n n |
(Ⅲ)当整数n≥3时,证明:2
C | 2 n |
C | 3 n |
C | 4 n |
C | n n |