网址:http://m.1010jiajiao.com/timu_id_53130[举报]
函数的定义域为(0,1](a为实数)
(1)当a=-1时,求函数y=f(x)的值域;
(2)若函数y=f(x)在定义域上是减函数,求a的取值范围;
(3)求函数y=f(x)在(0,1]上的最大值及最小值,并求出此时x的值.
若函数同时满足下列条件,(1)在D内为单调函数;(2)存在实数,.当时,,则称此函数为D内的等射函数,设则:
(1) 在(-∞,+∞)的单调性为 (填增函数或减函数);(2)当为R内的等射函数时,的取值范围是 .
查看习题详情和答案>>
若函数同时满足下列条件,(1)在D内为单调函数;(2)存在实数,.当时,,则称此函数为D内的等射函数,设则:
(1) 在(-∞,+∞)的单调性为 (填增函数或减函数);(2)当为R内的等射函数时,的取值范围是 .
设函数.
(Ⅰ) 当时,求的单调区间;
(Ⅱ) 若在上的最大值为,求的值.
【解析】第一问中利用函数的定义域为(0,2),.
当a=1时,所以的单调递增区间为(0,),单调递减区间为(,2);
第二问中,利用当时, >0, 即在上单调递增,故在上的最大值为f(1)=a 因此a=1/2.
解:函数的定义域为(0,2),.
(1)当时,所以的单调递增区间为(0,),单调递减区间为(,2);
(2)当时, >0, 即在上单调递增,故在上的最大值为f(1)=a 因此a=1/2.
查看习题详情和答案>>
设函数,其中为自然对数的底数.
(1)求函数的单调区间;
(2)记曲线在点(其中)处的切线为,与轴、轴所围成的三角形面积为,求的最大值.
【解析】第一问利用由已知,所以,
由,得, 所以,在区间上,,函数在区间上单调递减; 在区间上,,函数在区间上单调递增;
第二问中,因为,所以曲线在点处切线为:.
切线与轴的交点为,与轴的交点为,
因为,所以,
, 在区间上,函数单调递增,在区间上,函数单调递减.所以,当时,有最大值,此时,
解:(Ⅰ)由已知,所以, 由,得, 所以,在区间上,,函数在区间上单调递减;
在区间上,,函数在区间上单调递增;
即函数的单调递减区间为,单调递增区间为.
(Ⅱ)因为,所以曲线在点处切线为:.
切线与轴的交点为,与轴的交点为,
因为,所以,
, 在区间上,函数单调递增,在区间上,函数单调递减.所以,当时,有最大值,此时,
所以,的最大值为
查看习题详情和答案>>