摘要:设.则由①式得
网址:http://m.1010jiajiao.com/timu_id_530357[举报]
设M是由满足下列条件的函数f(x)构成的集合:“①方程f(x)-x=0有实数根;②函数f(x)的导数f′(x)满足0<f′(x)<1”.
(Ⅰ)判断函数f(x)=
+
是否是集合M中的元素,并说明理由;
(Ⅱ)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]⊆D,都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f'(x0)成立”,试用这一性质证明:方程f(x)-x=0只有一个实数根;
(Ⅲ)设x1是方程f(x)-x=0的实数根,求证:对于f(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,|f(x3)-f(x2)|<2. 查看习题详情和答案>>
(Ⅰ)判断函数f(x)=
x |
2 |
sinx |
4 |
(Ⅱ)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]⊆D,都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f'(x0)成立”,试用这一性质证明:方程f(x)-x=0只有一个实数根;
(Ⅲ)设x1是方程f(x)-x=0的实数根,求证:对于f(x)定义域中任意的x2、x3,当|x2-x1|<1,且|x3-x1|<1时,|f(x3)-f(x2)|<2. 查看习题详情和答案>>
设M是由满足下列条件的函数f(x)构成的集合:“①方程f(x)-x=0有实数根;②函数f(x)的导数f′(x)满足
0<f′(x)<1”
(I)证明:函数f(x)=
+
(0≤x<
)是集合M中的元素;
(II)证明:函数f(x)=
+
(0≤x<
)具有下面的性质:对于任意[m,n]⊆[0,
),都存在xo∈(m,n),使得等式f(n)-f(m)=(n-m)f′(xo)成立.
(III)若集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]⊆D,都存在xo∈(m,n),使得等式f(n)-f(m)=(n-m)f′(xo)成立.试用这一性质证明:对集合M中的任一元素f(x),方程f(x)-x=0只有一个实数根. 查看习题详情和答案>>
0<f′(x)<1”
(I)证明:函数f(x)=
3x |
4 |
x3 |
3 |
1 |
2 |
(II)证明:函数f(x)=
3x |
4 |
x3 |
3 |
1 |
2 |
1 |
2 |
(III)若集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]⊆D,都存在xo∈(m,n),使得等式f(n)-f(m)=(n-m)f′(xo)成立.试用这一性质证明:对集合M中的任一元素f(x),方程f(x)-x=0只有一个实数根. 查看习题详情和答案>>
设M是由满足下列条件的函数f(x)构成的集合:“①方程f(x)-x=0有实数根;②函数f(x)的导数f'(x)满足0<f'(x)<1.”
(1)判断函数f(x)=
+
是否是集合M中的元素,并说明理由;
(2)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]30D,都存在-15P[m,n],使得等式f(n)-f(m)=(n-m)f'(x0)成立”,试用这一性质证明:方程f(x)-x=0只有一个实数根;
(3)设
是方程f(x)-x=0的实数根,求证:对于f(x)定义域中任意的x2,x3,当|x2-x1|<1,且|x3-x1|<1时,|f(x3)-f(x2)|<2.
查看习题详情和答案>>
(1)判断函数f(x)=
x |
3 |
cosx |
4 |
(2)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]30D,都存在-15P[m,n],使得等式f(n)-f(m)=(n-m)f'(x0)成立”,试用这一性质证明:方程f(x)-x=0只有一个实数根;
(3)设
1 |
5 |
设M是由满足下列条件的函数f(x)构成的集合:“①方程f(x)-x=0有实数根; ②函数f(x)的导数f'(x)满足0<f'(x)<1.”
(I)判断函数f(x)=
+
是否是集合M中的元素,并说明理由;
(II)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]⊆D,都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f'(x0)成立”,试用这一性质证明:方程f(x)-x=0只有一个实数根. 查看习题详情和答案>>
(I)判断函数f(x)=
x |
2 |
sinx |
4 |
(II)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]⊆D,都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f'(x0)成立”,试用这一性质证明:方程f(x)-x=0只有一个实数根. 查看习题详情和答案>>
设M是由满足下列条件的函数f(x)构成的集合:“①方程f(x)-x=0有实数根;②函数f(x)的导数f′(x)满足0<f′(x)<1.”
(Ⅰ)判断函数f(x)=+是否是集合M中的元素,并说明理由;
(Ⅱ)集合M中的元素f(x)具有下面的性质:若f(x)的定义域为D,则对于任意[m,n]D,都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f′(x0)成立,试用这一性质证明:方程f(x)-x=0只有一个实数根;
(Ⅲ)设x1是方程f(x)-x=0的实数根,求证:对于f(x)定义域中任意的x2,x3,当|x2-x1|<1,且|x3-x1|<1时,|f(x3)-f(x2)|<2.
查看习题详情和答案>>