网址:http://m.1010jiajiao.com/timu_id_530333[举报]
已知向量(
),向量
,
,
且.
(Ⅰ)求向量;
(Ⅱ)若
,
,求
.
【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。
(1)问中∵,∴
,…………………1分
∵,得到三角关系是
,结合
,解得。
(2)由,解得
,
,结合二倍角公式
,和
,代入到两角和的三角函数关系式中就可以求解得到。
解析一:(Ⅰ)∵,∴
,…………1分
∵,∴
,即
① …………2分
又 ② 由①②联立方程解得,
,
5分
∴ ……………6分
(Ⅱ)∵即
,
, …………7分
∴,
………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴
,即
,①……2分
又 ②
将①代入②中,可得 ③ …………………4分
将③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一
∵,
,∴
,且
……7分
∴,从而
. …………………8分
由(Ⅰ)知,
; ………………9分
∴. ………………………………10分
又∵,∴
,
又
,∴
……11分
综上可得 ………………………………12分
方法二∵,
,∴
,且
…………7分
∴.
……………8分
由(Ⅰ)知,
.
…………9分
∴
……………10分
∵,且注意到
,
∴,又
,∴
………………………11分
综上可得 …………………12分
(若用,又∵
∴
,
查看习题详情和答案>>
已知中心在原点,焦点在轴上的椭圆
的离心率为
,且经过点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存过点(2,1)的直线
与椭圆
相交于不同的两点
,满足
?若存在,求出直线
的方程;若不存在,请说明理由.
【解析】第一问利用设椭圆的方程为
,由题意得
解得
第二问若存在直线满足条件的方程为
,代入椭圆
的方程得
.
因为直线与椭圆
相交于不同的两点
,设
两点的坐标分别为
,
所以
所以.解得。
解:⑴设椭圆的方程为
,由题意得
解得,故椭圆
的方程为
.……………………4分
⑵若存在直线满足条件的方程为
,代入椭圆
的方程得
.
因为直线与椭圆
相交于不同的两点
,设
两点的坐标分别为
,
所以
所以.
又,
因为,即
,
所以.
即.
所以,解得
.
因为A,B为不同的两点,所以k=1/2.
于是存在直线L1满足条件,其方程为y=1/2x
查看习题详情和答案>>