摘要:
网址:http://m.1010jiajiao.com/timu_id_530282[举报]
(湖北理21)(本小题满分14分)
已知m,n为正整数.
(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;
(Ⅱ)对于n≥6,已知,求证
,m=1,1,2…,n;
(Ⅲ)求出满足等式3n+4m+…+(n+2)m=(n+3)n的所有正整数n.
查看习题详情和答案>>(08年山东卷文)(本小题满分14分)
已知曲线所围成的封闭图形的面积为
,曲线
的内切圆半径为
.记
为以曲线
与坐标轴的交点为顶点的椭圆.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设是过椭圆
中心的任意弦,
是线段
的垂直平分线.
是
上异于椭圆中心的点.
(1)若(
为坐标原点),当点
在椭圆
上运动时,求点
的轨迹方程;
(2)若是
与椭圆
的交点,求
的面积的最小值.
(08年山东卷理)(本小题满分14分)
如图,设抛物线方程为x2=2py(p>0),M为 直线y=-2p上任意一点,过M引抛物线的切线,切点分别为A,B.
(Ⅰ)求证:A,M,B三点的横坐标成等差数列;
(Ⅱ)已知当M点的坐标为(2,-2p)时,,求此时抛物线的方程;
(Ⅲ)是否存在点M,使得点C关于直线AB的对称点D在抛物线上,其中,点C满足
(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.
查看习题详情和答案>>