摘要:[解析]本小题主要考查直线与椭圆的位置关系.轨迹方程.不等式等基本知识.考查运算能力和综合解题能力.满分14分.解法一:(Ⅰ)由题设a=2,c=1,从而b2=a2-c2=3,
网址:http://m.1010jiajiao.com/timu_id_530144[举报]
已知△的内角所对的边分别为且.
(1) 若, 求的值;
(2) 若△的面积 求的值.
【解析】本小题主要考查正弦定理、余弦定理、同角三角函数的基本关系等基础知识,考查运算求解能力。第一问中,得到正弦值,再结合正弦定理可知,,得到(2)中即所以c=5,再利用余弦定理,得到b的值。
解: (1)∵, 且, ∴ . 由正弦定理得, ∴.
(2)∵ ∴. ∴c=5
由余弦定理得,
∴
查看习题详情和答案>>
已知是等差数列,其前n项和为, 是等比数列,且
(I)求数列与的通项公式;
(II)记求证:,。
【考点定位】本小题主要考查等差数列与等比数列的概念、通项公式、前n项和公式、数列求和等基础知识.考查化归与转化的思想方法.考查运算能力、推理论证能力.
查看习题详情和答案>>
(本小题满分13分)
已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。
(1)求椭圆C的方程;
(2)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。
【命题意图】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想。
查看习题详情和答案>>