网址:http://m.1010jiajiao.com/timu_id_530128[举报]
如图,已知直线(
)与抛物线
:
和圆
:
都相切,
是
的焦点.
(Ⅰ)求与
的值;
(Ⅱ)设是
上的一动点,以
为切点作抛物线
的切线
,直线
交
轴于点
,以
、
为邻边作平行四边形
,证明:点
在一条定直线上;
(Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为
, 直线
与
轴交点为
,连接
交抛物线
于
、
两点,求△
的面积
的取值范围.
【解析】第一问中利用圆:
的圆心为
,半径
.由题设圆心到直线
的距离
.
即,解得
(
舍去)
设与抛物线的相切点为
,又
,得
,
.
代入直线方程得:,∴
所以
,
第二问中,由(Ⅰ)知抛物线方程为
,焦点
. ………………(2分)
设,由(Ⅰ)知以
为切点的切线
的方程为
.
令,得切线
交
轴的
点坐标为
所以
,
, ∵四边形FAMB是以FA、FB为邻边作平行四边形
∴ 因为
是定点,所以点
在定直线
第三问中,设直线,代入
得
结合韦达定理得到。
解:(Ⅰ)由已知,圆:
的圆心为
,半径
.由题设圆心到直线
的距离
.
即,解得
(
舍去). …………………(2分)
设与抛物线的相切点为
,又
,得
,
.
代入直线方程得:,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知抛物线方程为
,焦点
. ………………(2分)
设,由(Ⅰ)知以
为切点的切线
的方程为
.
令,得切线
交
轴的
点坐标为
所以
,
, ∵四边形FAMB是以FA、FB为邻边作平行四边形,
∴ 因为
是定点,所以点
在定直线
上.…(2分)
(Ⅲ)设直线,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面积
范围是
查看习题详情和答案>>
如图,在四棱锥中,
⊥底面
,底面
为正方形,
,
,
分别是
,
的中点.
(I)求证:平面
;
(II)求证:;
(III)设PD=AD=a, 求三棱锥B-EFC的体积.
【解析】第一问利用线面平行的判定定理,,得到
第二问中,利用,所以
又因为,
,从而得
第三问中,借助于等体积法来求解三棱锥B-EFC的体积.
(Ⅰ)证明: 分别是
的中点,
,
. …4分
(Ⅱ)证明:四边形
为正方形,
.
,
.
,
,
.
,
. ………8分
(Ⅲ)解:连接AC,DB相交于O,连接OF, 则OF⊥面ABCD,
∴
查看习题详情和答案>>
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222644977354105/SYS201311012226449773541018_ST/0.png)
(Ⅰ)求证:当a取定值时,点H必为定点;
(Ⅱ)如图所示,当点P在第二象限,以OP为直径的圆与直线AB相切,且四边形ABPH的面积等于
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222644977354105/SYS201311012226449773541018_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101222644977354105/SYS201311012226449773541018_ST/images2.png)
在棱长为的正方体
中,
是线段
的中点,
.
(1) 求证:^
;
(2) 求证://平面
;
(3) 求三棱锥的表面积.
【解析】本试题考查了线线垂直和线面平行的判定定理和表面积公式的运用。第一问中,利用,得到结论,第二问中,先判定
为平行四边形,然后
,可知结论成立。
第三问中,是边长为
的正三角形,其面积为
,
因为平面
,所以
,
所以是直角三角形,其面积为
,
同理的面积为
,
面积为
. 所以三棱锥
的表面积为
.
解: (1)证明:根据正方体的性质,
因为,
所以,又
,所以
,
,
所以^
.
………………4分
(2)证明:连接,因为
,
所以为平行四边形,因此
,
由于是线段
的中点,所以
, …………6分
因为面
,
平面
,所以
∥平面
. ……………8分
(3)是边长为
的正三角形,其面积为
,
因为平面
,所以
,
所以是直角三角形,其面积为
,
同理的面积为
,
……………………10分
面积为
. 所以三棱锥
的表面积为
查看习题详情和答案>>