摘要:所以当n=0时.菱形ABCD的面积取得最大值.
网址:http://m.1010jiajiao.com/timu_id_530012[举报]
已知椭圆的左、右焦点分别为、,P为椭圆 上任意一点,且的最小值为.
(1)求椭圆的方程;
(2)动圆与椭圆相交于A、B、C、D四点,当为何值时,矩形ABCD的面积取得最大值?并求出其最大面积.
查看习题详情和答案>>
如图,已知半径为r的圆M的内接四边形ABCD的对角线AC和BD相互垂直且交点为P.
(1)若四边形ABCD中的一条对角线AC的长度为d(0<d<2r),试求:四边形ABCD面积的最大值;
(2)试探究:当点P运动到什么位置时,四边形ABCD的面积取得最大值,最大值为多少?
(3)对于之前小题的研究结论,我们可以将其类比到椭圆的情形.如图2,设平面直角坐标系中,已知椭圆Γ:
+
=1(a>b>0)的内接四边形ABCD的对角线AC和BD相互垂直且交于点P.试提出一个由类比获得的猜想,并尝试给予证明或反例否定.
查看习题详情和答案>>
(1)若四边形ABCD中的一条对角线AC的长度为d(0<d<2r),试求:四边形ABCD面积的最大值;
(2)试探究:当点P运动到什么位置时,四边形ABCD的面积取得最大值,最大值为多少?
(3)对于之前小题的研究结论,我们可以将其类比到椭圆的情形.如图2,设平面直角坐标系中,已知椭圆Γ:
x2 |
a2 |
y2 |
b2 |
已知椭圆C:
+
=1(a>b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),P为椭圆C上任意一点,且cos∠F1PF2的最小值为
.
(1)求椭圆C的方程;
(2)动圆x2+y2=t2(
<t<
)与椭圆C相交于A、B、C、D四点,当t为何值时,矩形ABCD的面积取得最大值?并求出其最大面积.
查看习题详情和答案>>
x2 |
a2 |
y2 |
b2 |
1 |
3 |
(1)求椭圆C的方程;
(2)动圆x2+y2=t2(
2 |
3 |